Answer:
C. To determine how efficient reactions are.
D. To determine how much reactant they need.
Explanation:
When you are doing a reaction, you are hoping for a percent yield to close of 100%. You make the reaction and determine how many product you obtain. If you know the percent yield of a reaction you can calculate the amount of reactant you need to obtain a determined amount of product.
Having this in mind:
A. To balance the reaction equation. false. To calculate percent yield you need to balance the reaction before. You don't use percent yield to balance the reaction
B. To determine how much product they will need. false. You determine how much product you obtain after the reaction. How much product you need is independent of percent yield
C. To determine how efficient reactions are. true. A way to determine efficience of a reaction is with percent yield. An efficient reaction has a high percent yield.
D. To determine how much reactant they need. true. If you know percent yield of a reaction you can know how many reactant you must add to obtain the amount of product you want.
14 since K has 1 valence but there’s two so 2 valence for k and oxygen has 6 but there’s two so 12
Answer: B. Allow light to pass through. :)
Answer is: <span>the molarity of the diluted solution 0,454 M.
</span>V₁(NaOH) = 100 mL ÷ 1000 mL/L = 0,1 L.
c₁(NaOH) = 0,75 M = 0,75 mol/L.
n₁(NaOH) = c₁(NaOH) · V₁(NaOH).
n₁(NaOH) = 0,75 mol/L · 0,1 L.
n₁(NaOH) = 0,075 mol
n₂(NaOH) = n₁(NaOH) = 0,075 mol.
V₂(NaOH) = 165 mL ÷ 1000 mL/L = 0,165 L.
c₂(NaOH) = n₂(NaOH) ÷ V₂(NaOH).
c₂(NaOH) = 0,075 mol ÷ 0,165 L.
c₂(NaOH) = 0,454 mol/L.
Answer:
65.18% is the percent yield for this reaction.
Explanation:
Moles of salicyclic acid =
According to reaction 1 mole of salicyclic acid gives 1 mole of aspirin .
Then 0.01449 mole of salicylic acid will give :
of asprin
Mass of 0.01449 moles of aspirin :
= 0.01449 mol × 180 g/mol = 2.6082 g
Theoretical yield of aspirin = 2.6082 g
Experimental yield of aspirin = 1.7 g
The percent yield for this reaction:
65.18% is the percent yield for this reaction.