Answer:
A' (11, 4), B' (-10, -6), C' (7, -9)
Step-by-step explanation:
Since you are reflecting over the y-axis, you take the opposite of the x value. So if the x is positive, make it negative. If the x is negative, make it positive. The y coordinate stays the same.
The answers are option C) segment and option D) ray
<u>Step-by-step explanation</u>:
Line :
- A line has arrow mark in the two ends. So, the diagram is not a line.
Point :
- A point represents particular spot as a small dot. So, the diagram is not a point.
Segment :
- It is a piece of line that has two end points. This part of line is called line segment and it is shown in the picture. option C is correct.
Ray :
- A ray is a line with one endpoint and the other end extends with an arrow mark. So, the option D is also correct.
Answer:
(0, 7)
Step-by-step explanation:
The point that crosses the y-axis is called the y-intercept of the line.
We are given an equation of the line and we need to determine the y-intercept. This can be done by determining the constant in the equation.
What are constants?
Constants are such terms that include only numbers. There should be no variables in constants.
<u>We know that:</u>

The constant we can see in the equation is "7". Therefore, the y-intercept is 7.
Note: The y-intercept of the line must have an x-coordinate of 0.
<u>Therefore,</u>
⇒ Coordinates of y-intercept: (x, y) ==> (0, 7).
Answer:
General Formulas and Concepts:
<u>Pre-Calculus</u>
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Definite/Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
U-Substitution
- Trigonometric Substitution
Reduction Formula: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution (trigonometric substitution).</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Trigonometric Differentiation]:

- Rewrite <em>u</em>:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Trigonometric Substitution:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bcos%28u%29%5B1%20-%20sin%5E2%28u%29%5D%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5C%2C%20du)
- [Integrand] Rewrite:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bcos%28u%29%5Bcos%5E2%28u%29%5D%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5C%2C%20du)
- [Integrand] Simplify:

- [Integral] Reduction Formula:

- [Integral] Simplify:

- [Integral] Reduction Formula:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B2%20-%201%7D%7B2%7D%5Cint%5Climits%5Ea_b%20%7Bcos%5E%7B2%20-%202%7D%28u%29%7D%20%5C%2C%20du%20%2B%20%5Cfrac%7Bcos%5E%7B2%20-%201%7D%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- [Integral] Simplify:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits%5Ea_b%20%7B%7D%20%5C%2C%20du%20%2B%20%5Cfrac%7Bcos%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- [Integral] Reverse Power Rule:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B2%7D%28u%29%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7Bcos%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- Simplify:

- Back-Substitute:

- Simplify:

- Rewrite:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e