You swap the second number over.
then multiple the numbers instead.
22/7 x 44/11
22 x 44= 968
7 x 11 = 77
968/77 can be simplified to 12 14/77
Hope This Helps You
Answer:
AB = 75
BC = 60
AC = 45
m∠A = 53°
m∠B = 37°
m∠C = 90°
Step-by-step explanation:
<u>Trigonometric ratios</u>

where:
is the angle- O is the side opposite the angle
- A is the side adjacent the angle
- H is the hypotenuse (the side opposite the right angle)
Given:

Therefore:
- side opposite angle A = BC = 60
- side adjacent angle A = AC = 45
To find the length of AB (the hypotenuse), use Pythagoras’ Theorem:

(where a and b are the legs, and c is the hypotenuse, of a right triangle)
⇒ AC² + BC² = AB²
⇒ 45² + 60² = AB²
⇒ AB² = 5625
⇒ AB = √5625
⇒ AB = 75
To find m∠A:



m∠C = 90° (as it is a right angle)
The interior angles of a triangle sum to 180°
⇒ m∠A + m∠B + m∠C = 180°
⇒ 53° + m∠B + 90° = 180°
⇒ m∠B = 180° - 53° - 90°
⇒ m∠B = 37°
Answer:
oytqlrvlh<u>q</u><u>x</u><u>t</u><u>q</u><u>l</u><u>x</u><u>p</u><u>l</u><u>y</u><u>m</u><u>p</u><u>x</u><u>m</u><u>h</u><u>m</u><u>r</u>
The points at which a quadratic equation intersects the x-axis are referred to as x intercepts or zeros or roots of quadratic equation
Given :
The points at which a quadratic equation intersects the x-axis
The points at which the any quadratic equation crosses or touches the x axis are called as x intercepts.
At x intercepts the value of y is 0.
So , the points at which a quadratic equation intersects the x-axis is also called as zeros or roots of the quadratic equation .
The points at which a quadratic equation intersects the x-axis are referred to as x intercepts or zeros or roots of quadratic equation
Learn more : brainly.com/question/9055752