Answer:
A = (2p + 9) (2p - 9)
B = (x - 9) (x - 4)
Step-by-step explanation:
For A : Rewrite 4p^2 as (2p)^2.
(2p)^2−81
Rewrite 81 as 9^2.
(2p)^2−9^2
Since both terms are perfect squares, factor using the difference of squares formula, a^2 − b^2 = ( a + b ) ( a − b ) where a = 2p and b = 9 .
(2p + 9) (2p − 9)
For B : Consider the form x^2 + bx + c . Find a pair of integers whose product is c and whose sum is b . In this case, whose product is 36 and whose sum is − 13 .
-9, -4
(x - 9) (x - 4)
I hope this helps.
The correct answer is 2067
Answer:
334 - 112 + 100 - 98
Step-by-step explanation:
The equation y= 2
has one real root and that is x=-1.
What is real roots of the equation?
We are aware that when we resolve a linear or quadratic equation, we always arrive at the value variable of the equation, or, to put it another way, we always locate the equation's solution. This "solution" is what we refer to as the real roots. For instance, when the equation
-7x+12=0 is solved, the actual roots are 3 and 4.
Here given,
=> y = 2
Take y=0 then,
=> 2
=0
=>
=0
=>(x+1)=0
=> x=-1
Hence the given equation has one real root and that is x=-1.
To learn more about real roots refer the below link
brainly.com/question/24147137
#SPJ1
Answer:
The Answer above On The Image
Step-by-step explanation:
thanks……………………………………………