A) Single replacement; zinc chloride and hydrogen gas
Answer:
2.73 km/s
Explanation:
The escape velocity of an object in the gravitational field of the moon is (on the surface of the planet)

where
is the gravitational constant
is the mass of the Moon
is the radius of the Moon
As we can see, the escape velocity does not depend on the mass of the lunar module.
Substituting the numbers into the formula, we find

Answer:
Explanation:
Displacement of train = 60 - 25 = 35 mile
= 35 x 1.6 = 56 km
duration of time = 45 - 15 = 30 minutes
= 30 x 60 = 1800 s
velocity of train = displacement / time
= 56 / 1800 = .03111 km /s
= 31.111 m / s
Answer:
.
Explanation:
Assume that his calorimeter is sufficiently effective, such that no heat had escaped to the surroundings. Heat from this solution would be absorbed by either
- the solution, or
- the coffee cup.
Temperature change:
.
<h3>Heat absorbed by the solution:</h3>
Only the specific heat capacity (per unit mass) of the solution is given. Both the mass of the solution and the temperature change will be required for determining the energy change. Start by finding the mass of the solution.
.
Calculate the amount of heat absorbed from the specific heat:
.
<h3>Heat absorbed by the coffee cup:</h3>
The heat capacity of the coffee cup is given. Only the temperature change will be required for finding the amount of heat absorbed.
.
<h3>Heat that this reaction produces</h3>
Find the sum of the two parts of heat. Round to three significant figures as in the heat capacity of the coffee cup and the density of the solution.
.
Answer:
Coefficient of friction is
.
Work done is
.
Explanation:
Given:
Mass of the box (
):
kg
Force needed (
):
N
The formula to calculate the coefficient of friction between the floor and the box is given by

Here,
is the coefficient of friction and
is the acceleration due to gravity.
Substitute
N for
,
kg for
and
m/s² for
into equation (1) and solve to calculate the value of the coefficient of friction.

The formula to calculate the work done in overcoming the friction is given by

Here,
is the work done and
is the distance travelled.
Substitute
N for
and
for
into equation (2) to calculate the work done.
