1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
9

Denisty is found by what equation

Physics
2 answers:
pychu [463]3 years ago
6 0

Answer:

P= M/V

Explanation:

P- Density

M- Mass

V- Volume

Mass divided by Volume

algol133 years ago
3 0

Answer:2

Explanation:

You might be interested in
Fermentation is a _________ process.
ivanzaharov [21]
Fermentation is an aerobic process which means it uses oxygen. anaerobic is a process with out oxegyn

4 0
3 years ago
The diameter of the Moon is 3480 km. What is the surface area of the Moon?
valentinak56 [21]
You will need to convert the diameter to radius. 3840km diameter will be 1740km radius. 

<span>4 x 3.1416 x 1740² = ~38,046,032km² surface area.</span>
8 0
3 years ago
Read 2 more answers
Two forces,
serg [7]

First compute the resultant force F:

\mathbf F_1=(5.90\,\mathbf i-5.60\,\mathbf j)\,\mathrm N

\mathbf F_2=(4.65\,\mathbf i-5.55\,\mathbf j)\,\mathrm N

\implies\mathbf F=\mathbf F_1+\mathbf F_2=(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N

Then use Newton's second law to determine the acceleration vector \mathbf a for the particle:

\mathbf F=m\mathbf a

(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N=(2.10\,\mathrm{kg})\mathbf a

\mathbf a\approx(5.02\,\mathbf i-5.31\,\mathbf j)\dfrac{\rm m}{\mathrm s^2}

Let \mathbf x(t) and \mathbf v(t) denote the particle's position and velocity vectors, respectively.

(a) Use the fundamental theorem of calculus. The particle starts at rest, so \mathbf v(0)=0. Then the particle's velocity vector at <em>t</em> = 10.4 s is

\mathbf v(10.4\,\mathrm s)=\mathbf v(0)+\displaystyle\int_0^{10}\mathbf a(u)\,\mathrm du

\mathbf v(10.4\,\mathrm s)=\left((5.02\,\mathbf i-5.31\,\mathbf j)u\,\dfrac{\rm m}{\mathrm s^2}\right)\bigg|_{u=0}^{u=10.4}

\mathbf v(10.4\,\mathrm s)\approx(52.2\,\mathbf i-55.2\,\mathbf j)\dfrac{\rm m}{\rm s}

If you don't know calculus, then just use the formula,

v_f=v_i+at

So, for instance, the velocity vector at <em>t</em> = 10.4 s has <em>x</em>-component

v_{f,x}=0+\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)(10.4\,\mathrm s)=52.2\dfrac{\rm m}{\mathrm s^2}

(b) Compute the angle \theta for \mathbf v(10.4\,\mathrm s):

\tan\theta=\dfrac{-55.2}{52.2}\implies\theta\approx-46.6^\circ

so that the particle is moving at an angle of about 313º counterclockwise from the positive <em>x</em> axis.

(c) We can find the velocity at any time <em>t</em> by generalizing the integral in part (a):

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\implies\mathbf v(t)=\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

Then using the fundamental theorem of calculus again, we have

\mathbf x(10.4\,\mathrm s)=\mathbf x(0)+\displaystyle\int_0^{10.4}\mathbf v(u)\,\mathrm du

where \mathbf x(0)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m is the particle's initial position. So we get

\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\displaystyle\int_0^{10.4}\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\right)\,\mathrm du

\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\dfrac12\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=10.4}

\mathbf x(10.4\,\mathrm s)\approx(542\,\mathbf i-570\,\mathbf j)\,\mathrm m

So over the first 10.4 s, the particle is displaced by the vector

\mathbf x(10.4\,\mathrm s)-\mathbf x(0)\approx(270\,\mathbf i-283\,\mathbf j)\,\mathrm m-(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m\approx(272\,\mathbf i-287\,\mathbf j)\,\mathrm m

or a net distance of about 395 m away from its starting position, in the same direction as found in part (b).

(d) See part (c).

3 0
3 years ago
find the pressure exerted by a force of 8000 newtons on an area of 25m square..give your answer in Newtown/m2​
baherus [9]

Answer:

Pressure = 320 N/m²

Explanation:

Given the following data;

Force = 8000 Newton

Area = 25 m²

To find the pressure, we would use the following formula;

Pressure = force/area

Substituting into the formula, we have;

Pressure = 8000/25

Pressure = 320 N/m²

5 0
3 years ago
How do i figure out the net force of an object? explain please :)
Savatey [412]
Draw a free body diagram to help you visualize. draw the object and use arrows to label and determine where all the forces acting upon it will be. then u add up the sum of all forces. if two forces of equal magnitude and opposite directions will cancel each other out.
3 0
3 years ago
Other questions:
  • A spaceship is moving away from Earth at 0.892c when it fires a small rocket in the forward direction at 0.426c relative to the
    11·1 answer
  • Which describes the movement of a fluid during convection?
    12·2 answers
  • Hey guys i need song requests dbl
    10·2 answers
  • What metric unit would you use to estimate the actual distance between Boston and New York?
    14·1 answer
  • In the formula v=at what does the v stand for
    7·1 answer
  • Which of the following are correct statements? Check all that apply. A. An electron is a positively charged particle that orbits
    8·1 answer
  • Consider a person standing in a room at 23°C. Determine the total rate of heat transfer from this person if the exposed surface
    7·1 answer
  • A ball is projected at an angle of 53º. If the initial velocity is 48 meters/second, what is the vertical component of the veloc
    6·1 answer
  • What does the scientific method help test in environmental science?
    9·1 answer
  • A student conducts an experimenting to test how the temperature of a ball affects its bounce height. The same ball is used for e
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!