Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision
Explanation:
Weak nuclear force:
The interaction between the subatomic particles is called weak nuclear force.
The weak nuclear force is one of the four fundamental forces.
The weak nuclear force is effective at very short distance.
The range and relative strength of weak nuclear force is 10⁻¹⁸ m and 10²⁵ with respect to gravitational force respectively
Deuterium is formed due to the fusion of protons and neutrons under the action the weak force.
Example : Beta decay
Electromagnetic force:
The interaction between the charged particles is called electromagnetic force.
The electromagnetic force is one of the four fundamental forces.
The electromagnetic force is effective at long range distance.
The range and relative strength of electromagnetic force is infinity and 10³⁶ with respect to gravitational force respectively
Example : light
Her total distance was 200 meters, since she ran 100 meters west and the same 100 meters back. This gives an average speed of 200 m / 40 s = 5 m/s.
However, her displacement was 0, since she ended at the same place she began, therefore, her average velocity is 0 / 40 s = 0.
a. The speed of the pendulum when it reaches the bottom is 0.9 m/s.
b. The height reached by the pendulum is 0.038 m.
c. When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
<h3>Kinetic energy of the pendulum when it reaches bottom</h3>
K.E = 100%P.E - 18%P.E
where;
K.E(bottom) = 0.82P.E
K.E(bottom) = 0.82(mgh)
K.E(bottom) = 0.82(1 x 9.8 x 0.05) = 0.402 J
<h3>Speed of the pendulum</h3>
K.E = ¹/₂mv²
2K.E = mv²
v² = (2K.E)/m
v² = (2 x 0.402)/1
v² = 0.804
v = √0.804
v = 0.9 m/s
<h3>Final potential energy </h3>
P.E = 100%K.E - 7%K.E
P.E = 93%K.E
P.E = 0.93(0.402 J)
P.E = 0.374 J
<h3>Height reached by the pendulum</h3>
P.E = mgh
h = P.E/mg
h = (0.374)/(1 x 9.8)
h = 0.038 m
<h3>when the pendulum stops</h3>
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Thus, the speed of the pendulum when it reaches the bottom is 0.9 m/s.
The height reached by the pendulum is 0.038 m.
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Learn more about pendulum here: brainly.com/question/26449711
#SPJ1
Explanation:
so sorry
don't know but please mark me as brainliest please