Answer:
Explanation:
Given:
The equation describing the forest wood biomass per hectare as a function of plantation age t is:
y(t) = 5 + 0.005t^2 + 0.024t^3 − 0.0045t^4
The equation that describes the annual growth in wood biomass is:
y ′ (t) = 0.01t + 0.072t^2 - 0.018t^3
To find:
a) The year the annual growth achieved its highest possible value
b) when does y ′ (t) achieve its highest value?
a)
To determine the year the highest possible value was achieved, we will set the derivative y'(t) to zero. The values of t will be substituted into the second derivative to get the highest value


SInce t = 4.13, gives y ′' (t) = -0.316 (< 0). This makes it the maximum value of t
The year the annual growth achieved its highest possible value to the nearest whole number will be
year 4
b) y ′ (t) will achieve its highest value, when we substitute the value of t that gives into the initial function.
Initial function: y(t) = 5 + 0.005t^2 + 0.024t^3 − 0.0045t^4
Answer:
y=2x+6 ; x+y=51
Step-by-step explanation:
assuming x is one number and y is the other -
one number (y) is 6 more (+6) than twice another (2x) -
using that knowledge we form an equation -
y=2x+6
the sum (x+y) is 51
using this knowledge we can make the equation -
x+y=51
now you have -
y=2x+6 or 2x-y=-6
x+y=51
using system of equations -
you add the equations -
3x=45
x=15
y=51-x => y=36
hope this helps!!
The measures of the angles are 59 degrees
<h3>How to determine the value of the angles?</h3>
The angles are given as:
Angle 1 = 2x + 17
Angle 2 = 3x - 4
By the interior angle theorem, the angles are congruent
So, we have
Angle 1 = Angle 2
Substitute the known values in the above equation
2x + 17= 3x - 4
Collect the like terms
3x - 2x = 17 + 4
Evaluate the like terms
x = 21
Substitute x = 21 in Angle 1 = 2x + 17
Angle 1 = 2 * 21 + 17
Evaluate
Angle 1 = 59
This means that
Angle 1 = Angle 2 = 59
Hence, the measures of the angles are 59 degrees
Read more about angles at:
brainly.com/question/25716982
#SPJ1
Answer:
7/11
Step-by-step explanation:



