B is the answer. my aunt has a malignant tumor and that means its active
A star’s life expectancy depends on its mass. Generally, the more massive the star, the faster it burns up its fuel supply, and the shorter its life. The most massive stars can burn out and explode in a supernova after only a few million years of fusion. A star with a mass like the Sun, on the other hand, can continue fusing hydrogen for about 10 billion years. And if the star is very small, with a mass only a tenth that of the Sun, it can keep fusing hydrogen for up to a trillion years, longer than the current age of the universe.
Answer:
50%
Explanation:
According to the given information, the allele for the red-green colorblindness is inherited in an X linked recessive manner. Let's assume that the allele X^c is responsible for red-green colorblindness. The woman is normal but had a colorblind father (X^cY). Fathers give their X chromosomes to the daughters while their Y chromosome is transmitted to their sons. The sons get their X chromosomes from the mother.
The colorblind father has transmitted the X-linked allele for the red-green colorblindness to his daughter. Therefore, the genotype of the woman is X^cX. The woman would produce two types of eggs: 50 % with X^C and 50% with X. Therefore, 50% of sons of this woman would get X linked allele for the red-green colorblindness and would be affected by the disorder while the rest 50% of her sons will be normal.
Answer:
30 protein molecules per mRNA molecule
Explanation:
In this problem, it is necessary to have into account that the transcriptional process requires six (6) phosphate bonds to synthesize one (1) codon (i.e, each three nucleotides), and also discards 95% more energy to make mRNA, it means 19 times this amount of energy >> 6 x 19 = 114 bonds. In consequence, transcription requires 120 phosphate bonds (6 + 114 = 120), while translation requires four (4) phosphate bonds per codon. From this deduction, it is possible to find the number of protein molecules synthesized with regard to the energy cost of the translation process and the transcriptional process >>> 120 bonds (transcription) /4 bonds (translation) = 30 protein molecules.