9 because it take 3 to fill 1/3 do 3 times 3 and its nine
Given :
Interest rate , r = 4 %.
To Find :
The APY .
Solution :
APY is given by :
Here , r is compound interest and n is number of time compounded .
So ,
Therefore , APY is 30.57 % .
Hence , this is the required solution .
Answer:
Step-by-step explanation:
We know that for principal amount P , time period T and rate of interest , simple interest is given by .
Here ,
To find : simple interest rate i.e.,
On putting values of in formula , we get
Now we need to round off the answer to the nearest tenth .
So, simple interest rate is % = =
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
v=6
v=−4
Step-by-step explanation: