1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
3 years ago
8

A certain organ pipe, open at both ends, produces a fundamental frequency of 300 Hz in air. If the pipe is filled with helium at

the same temperature, what fundamental frequency fHe will it produce? Take the molar mass of air to be 28.8 g/mol and the molar mass of helium to be 4.00 g/mol. Now consider a pipe that is stopped (i.e., closed at one end) but still has a fundamental frequency of 300 Hz in air. How does your answer to first question, fHe, change?
Physics
1 answer:
Sunny_sXe [5.5K]3 years ago
7 0

Answer:

Explanation:

Let L be the length of organ pipe . For fundamental note

wave length λ = 2L

Frequency = velocity / λ

300 = velocity / λ

velocity in air= 300 x 2L

= 600 L

In helium velocity changes as follows

velocity ∝ 1 / √molar mass

velocity in helium =√ ( 28.8 / 4 ) x velocity in air

velocity in helium = 2.68  x velocity in air

velocity in helium = 2.68  x 600 L

Frequency = velocity in helium / 2L

= 2.68 X 600L / 2L

= 804 Hz.

For open organ pipe also increase will be 2.68 times only because the increase is due to change in the medium from air to helium .

You might be interested in
types of plate boundaries where two plates separate or move apart?? does anyone know please help ??????
Shtirlitz [24]
Erosion i belive it is called
7 0
3 years ago
Read 2 more answers
A commuter train passes a passenger platform at a constant speed of 40.4 m/s. The train horn is sounded at its characteristic fr
mihalych1998 [28]

(a) -83.6 Hz

Due to the Doppler effect, the frequency of the sound of the train horn appears shifted to the observer at rest, according to the formula:

f' = (\frac{v}{v\pm v_s})f

where

f' is the apparent frequency

v = 343 m/s is the speed of sound

v_s is the velocity of the source of the sound (positive if the source is moving away from the observer, negative if it is moving towards the observer)

f is the original frequency of the sound

Here we have

f = 350 Hz

When the train is approaching, we have

v_s = -40.4 m/s

So the frequency heard by the observer on the platform is

f' = (\frac{343 m/s}{343 m/s - 40.4 m/s})(350 Hz)=396.7 Hz

When the train has passed the platform, we have

v_s = +40.4 m/s

So the frequency heard by the observer on the platform is

f' = (\frac{343 m/s}{343 m/s + 40.4 m/s})(350 Hz)=313.1 Hz

Therefore the overall shift in frequency is

\Delta f = 313.1 Hz - 396.7 Hz = -83.6 Hz

And the negative sign means the frequency has decreased.

(b) 0.865 m

The wavelength and the frequency of a wave are related by the equation

v=\lambda f

where

v is the speed of the wave

\lambda is the wavelength

f is the frequency

When the train is approaching the platform, we have

v = 343 m/s (speed of sound)

f = f' = 396.7 Hz (apparent frequency)

Therefore the wavelength detected by a person on the platform is

\lambda' = \frac{v}{f'}=\frac{343 m/s}{396.7 Hz}=0.865m

5 0
4 years ago
What is an example of a invertebrate that doesn’t have an exoskeleton?
Tatiana [17]

<em><u>Invertebrat</u></em><em><u>e</u></em><em><u> </u></em><em><u>means</u></em><em><u> </u></em><em><u>those</u></em><em><u> </u></em><em><u>organism</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>doesnot</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>backbone</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>their</u></em><em><u> </u></em><em><u>body</u></em><em><u> </u></em><em><u>.</u></em><em><u>Some</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>t</u></em><em><u>he</u></em><em><u> </u></em><em><u>examples</u></em><em><u> </u></em><em><u>are</u></em><em><u>:</u></em>

<em><u>1</u></em><em><u>.</u></em><em><u>S</u></em><em><u>p</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u>r</u></em>

<em><u>2</u></em><em><u>.</u></em><em><u>e</u></em><em><u>a</u></em><em><u>r</u></em><em><u>t</u></em><em><u>h</u></em><em><u>w</u></em><em><u>o</u></em><em><u>r</u></em><em><u>m</u></em>

<em><u>3</u></em><em><u>.</u></em><em><u>S</u></em><em><u>t</u></em><em><u>a</u></em><em><u>r</u></em><em><u>f</u></em><em><u>i</u></em><em><u>s</u></em><em><u>h</u></em>

<em><u>4</u></em><em><u>.</u></em><em><u>S</u></em><em><u>e</u></em><em><u>a</u></em><em><u> </u></em><em><u>urchins</u></em><em><u>.</u></em>

<em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>lot</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

5 0
3 years ago
Read 2 more answers
Why does a stop sign appear red?
dolphi86 [110]

Answer:

because it’s suppose to be red like a stop light.

Explanation:

So it tells you to stop

8 0
3 years ago
An electric bulb is marked 40volts ,230w another bulb is marked 40w,110v
Andrej [43]

Answer:

a. The ratio of their resistance is 2783:64

b. The ratio of their energy is 4:23

c. The charge on the first bulb is 5.75 C

The charge on the second bulb is 0.\overline {36} C

Explanation:

The voltage on one of the electric bulbs, V₁ = 40  volts

The power rating of the bulb, P₁ = 230 w

The voltage on the other electric bulbs, V₂ = 110 volts

The power rating of the bulb, P₂ = 40 w

a. The power is given by the formula, P = I·V = V²/R

Therefore, R = V²/P

For the first bulb, the resistance, R₁ = 40²/230 ≈ 6.96

The resistance of the second bulb, R₂ = 110²/40

The ratio of their resistance, R₂/R₁ = (110²/40)/(40²/230) = 2783/64

∴ The ratio of their resistance, R₂:R₁ = 2783:64

b. The energy of a bulb, E = t × P

Where;

t = The time in which the bulb is powered on

∴ The energy of the first bulb, E₁ = 230 w × t

The energy of the second bulb, E₂ = 40 w × t

The ratio of their energy, E₂/E₁ = (40 w × t)/(230 w × t) = 4/23

∴ The ratio of their energy, E₂:E₁ = 4:23

c. The charge on a bulb, 'Q', is given by the formula, Q = I × t

Where;

I = The current flowing through the bulb

From P = I·V, we get;

I = P/V

For the first bulb, the current, I = 230 w/40 V = 5.75 amperes

The charge on the first bulb per second (t = 1) is therefore;

Q₁ = 5.75 A × 1 s = 5.75 C

The charge on the first bulb, Q₁ = 5.75 C

Similarly, the charge on the second bulb, Q₂ = (40 W/110 V) × 1 s = 0.\overline {36} C

The charge on the second bulb, Q₂ = 0.\overline {36} C.

d. The question has left out parts

4 0
3 years ago
Other questions:
  • You throw a ball straight up with an initial velocity of 15.0 m/s. It passes a tree branch on the way up at a height of 7.00 m.
    14·1 answer
  • The gas tank of a car is filled with a nozzle that discharges gasoline at a constant flow rate. Based on unit considerations of
    12·1 answer
  • ) A skier starts down a frictionless 32° slope. After a vertical drop of 25 m, the slope temporarily levels out and then slopes
    9·1 answer
  • 19. The term, The Mad as a Hatter, began in 19th century Europe because hatmakers used mercury.
    14·1 answer
  • A child with mass 40 kg sits on the edge of a merry-go-round at a distance of 3.0 m from its axis of rotation. The merry-go-roun
    9·1 answer
  • Luis wanted to know which of his 4 toy cars is the fastest. He conducted an experime and recorded his results in the table shown
    14·1 answer
  • A spaceship is moving past us at a speed close to the speed of light. If we could measure the mass of the spaceship as it goes b
    13·1 answer
  • How high above the ground would a 10 kg object needs to be to have the same GPE as the 30 kg object in the example
    13·1 answer
  • Of the following statement: Choose the Variable<br><br> X = 4 m
    15·1 answer
  • ‼️HELP HELP HELP‼️
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!