<u>Answer</u>
8. 2 Hz
9. 0.5 seconds
10. 20 cm
<u>Explanation</u>
<u>Q 8</u>
Frequency is the number of oscillation in a unit time. It is the rate at which something repeats itself in a second.
In this case, the spring bob up and down 2 times per second.
∴ Frequency = 2 Hz
<u>Q 9</u>
Period is the time taken to complete one oscillation.
2 oscillations takes 1 second
1 oscillation = 1/2 seconds.
∴ Period = 0.5 seconds
<u>Q 10</u>
Amplitude is the the maximum displacement of the spring.
In this case the spring bob up 20 cm. This is it's displacement.
∴ Amplitude = 20 cm
Av Speed = total distance / time time = 32+ 46 / 2.7 = 28 m/sec
Av velocity = total displacement / time total = S / t
S = sqrt( 32^2 +46^2) = 56 m
Av Velocity = 56/ 2,7 = 20.75 m/sec
with angle tan^-1 = 0.7 north west ( about 35 degrees north west)
<span>Scientific theories are tested and proven over time; they are then considered scientific laws.
Sometimes however, they are proven wrong, and so they do not become laws
hope this helps</span>
Answer:
Hi
Final temperature = 250.11 °C
Final volume = 0,1 m3.
Process work = 0
Explanation:
The specific volume in the initial state is: v = 0.1m3/2 kg = 0.05 m3/kg.
This volume is located between the volumes as saturated liquid and saturated steam at 20 °C. For this reason the water is initially in a liquid vapor mixture. As the piston was blocked the volume remains constant and the process is isometric, also known as isocoric process, so the final temperature will be the water temperature at a saturated steam of v=0.05m3/kg, which is obtained by using steam tables for water, by linear interpolation. As follows, using table A-4 of the Cengel book 7th Edition:
v=0.05 m3/kg
v1=0.057061 m3/kg
T1=242.56°C
v2=0.049779 m3/kg
T2=250.35°C
T=
The process work is zero because there is no change in volume during heating:
W=PxΔv=Px0=0
where
W=process work
P=pressure
Δv=change of volume, is zero because the piston was blocked so the volume remains constant.