Answer is x=24
...hope it helps
Answer:
There were 6 benches in park 1 and 18 benches in park 2.
Step-by-step explanation:
Let x be the no of benches in Park 1 and y in park 2.
Given that there are 12 more benches in park 2 than 1
Writing this in equation form, we have y = x+12 ... i
Next is if 2 benches were transferred from park 2 to park 1, then we have
x+2 in park 1 and y-2 in park 2.
Given that y-2 = twice that of x+2
Or y-2 = 2x+4 ... ii
Rewrite by adding 2 to both sides of equation ii.
y = 2x+6 ... iii
i-iii gives 0 = -x+6
Or x =6
Substitute in i, to have y = 6+12 = 18
Verify:
Original benches 6 and 18.
18 = 6+12 hence I condition is satisfied
18-2 = 2(6+2)
II is also satisfied.
It is the third answer down
<h3>
Answer: True</h3>
This is often how many math teachers and textbooks approach problems like this. The overlapped region is the region in which satisfies every inequality in the system. Be sure to note the boundary of each region whether you're dealing with a dashed line or a solid line. Dashed lines mean points on the boundary do not count as solution points, whereas solid boundaries allow those points as part of the solution set.
Side note: This is assuming you're dealing with 2 variable inequalities. If you only have one variable, you don't need to graph and instead could use algebra. Graphing doesn't hurt though.