1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariulka [41]
3 years ago
13

Which number is irrational? 6√ 1/3 0.14............ 4√

Mathematics
2 answers:
Maslowich3 years ago
6 0
The answer may be 1/3
deff fn [24]3 years ago
3 0
Umm, I think it is the first one.
You might be interested in
What is 1 + 1 somone ples help i am in kindtergarden
alex41 [277]

Answer:

it equals 2

Step-by-step explanation:

6 0
3 years ago
Angle B measures 60°. What is the measure of the angle that is complementary to angle B? 30° 60° 120° 180°
Ivenika [448]

Answer:

30

Step-by-step explanation:

Complementary angle to B = 90 - 60 = 30

8 0
3 years ago
Read 2 more answers
1) Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given
neonofarm [45]

Answer:

Check below, please

Step-by-step explanation:

Hello!

1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this

x_{1}=2\\x_{2}=2-\frac{f(2)}{f'(2)}=2.5\\x_{3}=2.5-\frac{f(2.5)}{f'(2.5)}\approx 2.4166\\x_{4}=2.4166-\frac{f(2.4166)}{f'(2.4166)}\approx 2.41421\\x_{5}=2.41421-\frac{f(2.41421)}{f'(2.41421)}\approx \mathbf{2.41421}

2)  Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.

We can rewrite it as: x^2-2x-4=0

x_{1}=-1.1\\x_{2}=-1.1-\frac{f(-1.1)}{f'(-1.1)}=-1.24047\\x_{3}=-1.24047-\frac{f(1.24047)}{f'(1.24047)}\approx -1.23607\\x_{4}=-1.23607-\frac{f(-1.23607)}{f'(-1.23607)}\approx -1.23606\\x_{5}=-1.23606-\frac{f(-1.23606)}{f'(-1.23606)}\approx \mathbf{-1.23606}

As for

x_{1}=3.2\\x_{2}=3.2-\frac{f(3.2)}{f'(3.2)}=3.23636\\x_{3}=3.23636-\frac{f(3.23636)}{f'(3.23636)}\approx 3.23606\\x_{4}=3.23606-\frac{f(3.23606)}{f'(3.23606)}\approx \mathbf{3.23606}\\

3) Rewriting and calculating its derivative. Remember to do it, in radians.

5\cos(x)-x-1=0 \:and f'(x)=-5\sin(x)-1

x_{1}=1\\x_{2}=1-\frac{f(1)}{f'(1)}=1.13471\\x_{3}=1.13471-\frac{f(1.13471)}{f'(1.13471)}\approx 1.13060\\x_{4}=1.13060-\frac{f(1.13060)}{f'(1.13060)}\approx 1.13059\\x_{5}= 1.13059-\frac{f( 1.13059)}{f'( 1.13059)}\approx \mathbf{ 1.13059}

For the second root, let's try -1.5

x_{1}=-1.5\\x_{2}=-1.5-\frac{f(-1.5)}{f'(-1.5)}=-1.71409\\x_{3}=-1.71409-\frac{f(-1.71409)}{f'(-1.71409)}\approx -1.71410\\x_{4}=-1.71410-\frac{f(-1.71410)}{f'(-1.71410)}\approx \mathbf{-1.71410}\\

For x=-3.9, last root.

x_{1}=-3.9\\x_{2}=-3.9-\frac{f(-3.9)}{f'(-3.9)}=-4.06438\\x_{3}=-4.06438-\frac{f(-4.06438)}{f'(-4.06438)}\approx -4.05507\\x_{4}=-4.05507-\frac{f(-4.05507)}{f'(-4.05507)}\approx \mathbf{-4.05507}\\

5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.

x_{n+1}=x_{n}-\frac{f'(n)}{f''(n)}

f(x)=x^6-x^4+3x^3-2x

\mathbf{f'(x)=6x^5-4x^3+9x^2-2}

\mathbf{f''(x)=30x^4-12x^2+18x}

For -1.2

x_{1}=-1.2\\x_{2}=-1.2-\frac{f'(-1.2)}{f''(-1.2)}=-1.32611\\x_{3}=-1.32611-\frac{f'(-1.32611)}{f''(-1.32611)}\approx -1.29575\\x_{4}=-1.29575-\frac{f'(-1.29575)}{f''(-4.05507)}\approx -1.29325\\x_{5}= -1.29325-\frac{f'( -1.29325)}{f''( -1.29325)}\approx  -1.29322\\x_{6}= -1.29322-\frac{f'( -1.29322)}{f''( -1.29322)}\approx  \mathbf{-1.29322}\\

For x=0.4

x_{1}=0.4\\x_{2}=0.4\frac{f'(0.4)}{f''(0.4)}=0.52476\\x_{3}=0.52476-\frac{f'(0.52476)}{f''(0.52476)}\approx 0.50823\\x_{4}=0.50823-\frac{f'(0.50823)}{f''(0.50823)}\approx 0.50785\\x_{5}= 0.50785-\frac{f'(0.50785)}{f''(0.50785)}\approx  \mathbf{0.50785}\\

and for x=-0.4

x_{1}=-0.4\\x_{2}=-0.4\frac{f'(-0.4)}{f''(-0.4)}=-0.44375\\x_{3}=-0.44375-\frac{f'(-0.44375)}{f''(-0.44375)}\approx -0.44173\\x_{4}=-0.44173-\frac{f'(-0.44173)}{f''(-0.44173)}\approx \mathbf{-0.44173}\\

These roots (in bold) are the critical numbers

3 0
3 years ago
Here is a sketch of y=x^2+bx+c The curve intersects
atroni [7]

Answer:

y = 18  and  x = -2

Step-by-step explanation:

y = x^2+bx+c   To find the turning point, or vertex, of this parabola, we need to work out the values of the coefficients b and c. We are given two different solutions of the equation. First, (2, 0).  Second, (0, -14). So we have a value (-14) for c. We can substitute that into our first equation to find b. We can now plug in our values for b and c into the equation to get its standard form. To find the vertex, we can convert this equation to vertex form by completing the square. Thus, the vertex is (4.5, –6.25). We can confirm the solution graphically     Plugging in  (2,0) :

y=x2+bx+c  

0=(2)^2+b(2)+c  

y=4+2b+c  

-2b=4+c  

b=-2+2c  

Plugging in  (0,−14) :

y=x2+bx+c  

−14=(0)2+b(0)+c  

−16=0+b+c  

b=16−c  

Now that we have two equations isolated for  b , we can simply use substitution and solve for  c .   y=x2+bx+c  16 + 2 = y   y = 18  and  x = -2

4 0
3 years ago
I'll give brainlist! HELP
scZoUnD [109]
The answer is the fourth one.
3 0
3 years ago
Other questions:
  • Ritchie wants to paint his bedroom ceiling and four walls. Both the ceiling and walls are 8 by 8 feet. A gallon of paint covers
    7·1 answer
  • There are 7 ducks swimming in a pond. If 3 have green wings and 4 have blue wings, what fraction of the ducks have green wings?
    15·2 answers
  • Falcon 13 miles an hour more than 6 times the speed of human how fast is the fastest human
    11·1 answer
  • Remember to show work and explain. Use the math font.
    7·1 answer
  • 2xB+4= -8<br> what number does B stand for in the question
    13·2 answers
  • may somebody help me with this and don't say you can't see it because I know y'all can so stop lying!!
    5·1 answer
  • -8d - 5d +7d=72 what is the answer i am completely lost
    8·1 answer
  • Juan's puppy currently weighs 80 pounds. This is a 60% increase in weight from when he got her. How much did the puppy weigh ori
    5·1 answer
  • Which equation goes through the point (-7, 3) and is parallel to y = −8x + 1?
    15·1 answer
  • Pls answer i’m begging
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!