Answer:
V = 128π/3 vu
Step-by-step explanation:
we have that: f(x)₁ = √(4 - x²); f(x)₂ = -√(4 - x²)
knowing that the volume of a solid is V=πR²h, where R² (f(x)₁-f(x)₂) and h=dx, then
dV=π(√(4 - x²)+√(4 - x²))²dx; =π(2√(4 - x²))²dx ⇒
dV= 4π(4-x²)dx , Integrating in both sides
∫dv=4π∫(4-x²)dx , we take ∫(4-x²)dx and we solve
4∫dx-∫x²dx = 4x-(x³/3) evaluated -2≤x≤2 or too 2 (0≤x≤2) , also
∫dv=8π∫(4-x²)dx evaluated 0≤x≤2
V=8π(4x-(x³/3)) = 8π(4.2-(2³/3)) = 8π(8-(8/3)) =(8π/3)(24-8) ⇒
V = 128π/3 vu
Answer:
Step-by-step explanation:
it becomes lighter :P or maybe you could say "bouncier" :P
D 8x-3 because must add them all together
A binomial experiment is an experiment which satisfies these four conditions. A fixed number of trials. Each trial is independent of the others. There are only two outcomes. The probability of each outcome remains constant from trial to trial.
Volume = area of base x perpendicular distance
= 600 x 24 = 14,400 cubic units