Answer:
the answer is 0.012, terminating
Step-by-step explanation:
move the decimal place three places to the left
since it is not repeating it is terminating
Check the picture below.
so.. simply, use the distance formula, to get their length an add them up, and that's the perimeter of the polygon.

![\bf -------------------------------\\\\ d=\sqrt{[2-(-1)]^2+(4-2)^2}\implies d=\sqrt{(2+1)^2+(2)^2} \\\\\\ d=\sqrt{3^2+2^2}\implies \boxed{d=\sqrt{13}}\\\\ -------------------------------\\\\ d=\sqrt{(3-2)^2+(-2-4)^2}\implies d=\sqrt{1^2+(-6)^2}\implies \boxed{d=\sqrt{37}}\\\\ -------------------------------\\\\ d=\sqrt{(-2-3)^2+[-3-(-2)]^2}\implies d=\sqrt{(-5)^2+(-3+2)^2} \\\\\\ d=\sqrt{(-5)^2+(-1)^2}\implies \boxed{d=\sqrt{26}}](https://tex.z-dn.net/?f=%5Cbf%20-------------------------------%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%5B2-%28-1%29%5D%5E2%2B%284-2%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%282%2B1%29%5E2%2B%282%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B3%5E2%2B2%5E2%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B13%7D%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%283-2%29%5E2%2B%28-2-4%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B1%5E2%2B%28-6%29%5E2%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B37%7D%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%28-2-3%29%5E2%2B%5B-3-%28-2%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-5%29%5E2%2B%28-3%2B2%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%28-5%29%5E2%2B%28-1%29%5E2%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B26%7D%7D)
![\\\\ -------------------------------\\\\ d=\sqrt{[-1-(-2)]^2+[2-(-3)]^2}\implies d=\sqrt{(-1+2)^2+(2+3)^2} \\\\\\ d=\sqrt{(1)^2+(5)^2}\implies \boxed{d=\sqrt{26}}](https://tex.z-dn.net/?f=%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%5B-1-%28-2%29%5D%5E2%2B%5B2-%28-3%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-1%2B2%29%5E2%2B%282%2B3%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%281%29%5E2%2B%285%29%5E2%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B26%7D%7D)
so, those are their lengths, sum them all up, that's the polygon's perimeter.
90 and 91...................