Since this is in the Mathematics subject my best answer would be Rational.
325 meters if using full height of 324 meters for tower
277 meters if using observation platform height of 276 meters.
When the depression is 37 degrees, you can create a right triangle with the angles 90, 37, and 53 degrees. The distance from a point directly underneath the observer will be:
h/tan(37)
where
h = height of the observer.
And when the depression is 72 degrees, the distance will be:
h/tan(72)
So the distance between the two points will be the absolute value of:
h/tan(72) - h/tan(37)
=(tan(37)h)/tan(37)tan(72) - tan(72)h/(tan(37)tan(72))
=(tan(37)h - tan(72)h) /(tan(37)tan(72))
=h(0.75355405 - 3.077683537)/(0.75355405 * 3.077683537)
=h(0.75355405 - 3.077683537)/(0.75355405 * 3.077683537)
=h(-2.324129487/2.319200894)
=h*-1.002125125
And since we're looking for absolute value
=h*1.002125125
As for the value of "h" to use, that's unspecified in the problem. If you take h
to be the height of the Eiffel Tower, then it's 324 meters. If you take h to be
the highest observation platform on the Eiffel Tower, then it's 276 meters. In
any case, simply multiply h by the value calculated above:
=h*1.002125125
=324*1.002125125
= 324.6885406 m
=h*1.002125125
=276*1.002125125
=276.5865346
Answer:
7 square units
Step-by-step explanation:
As with many geometry problems, there are several ways you can work this.
Label the lower left and lower right vertices of the rectangle points W and E, respectively. You can subtract the areas of triangles WSR and EQR from the area of trapezoid WSQE to find the area of triangle QRS.
The applicable formulas are ...
area of a trapezoid: A = (1/2)(b1 +b2)h
area of a triangle: A = (1/2)bh
So, our areas are ...
AQRS = AWSQE - AWSR - AEQR
= (1/2)(WS +EQ)WE -(1/2)(WS)(WR) -(1/2)(EQ)(ER)
Factoring out 1/2, we have ...
= (1/2)((2+5)·4 -2·2 -5·2)
= (1/2)(28 -4 -10) = 7 . . . . square units
Angle 4 = Angle 5 = 42⁰( alternate interrior angle)
Hope it helps u
Answer:
D
Step-by-step explanation:
P(3) = ⅙
P(5) = ⅙
Trials are independent so,
P(3 then 5) = 1/6 × 1/6 = 1/36