Risk of not being able to reduce their weight
Here is the full question
Suppose there are 10,000 civilizations in the Milky Way Galaxy. If the civilizations were randomly distributed throughout the disk of the galaxy, about how far (on average) would it be to the nearest civilization?
(Hint: Start by finding the area of the Milky Way's disk, assuming that it is circular and 100,000 light-years in diameter. Then find the average area per civilization, and use the distance across this area to estimate the distance between civilizations.)
Answer:
1000 light-years (ly)
Explanation:
If we go by the hint; The area of the disk can be expressed as:

where D = 100, 000 ly
Let's divide the Area by the number of civilization; if we do that ; we will be able to get 'n' disk that is randomly distributed; so ;

The distance between each disk is further calculated by finding the radius of the density which is shown as follows:



replacing d =
in the equation above; we have:




The distance (s) between each civilization = 
= 2 (500 ly)
= 1000 light-years (ly)
Answer:
No, it is not attracted.
Explanation:
If any sphere is electrically neutral it is not attracted. The materials which are attracted by magnet are called magnetic material whereas which are not attracted are called non magnetic material. Sphere made up of non magnetic materials such as glass, wood, paper will not attracted weather is kept near north pole or near south pole.
The force between the two objects is 19.73 nN.
<u>Explanation:
</u>
Any force acting between two objects tends to be directly proportional to the product of their masses and inversely proportional to the square of the distance between the two objects. And this kind of attraction force between two objects is termed as gravitational force.
So if we consider
and
as the masses of both objects and let d be the distance of separation of two objects. Then the force between the two objects can be determined as below:

As gravitational constant
,
= 20 kg and
= 100 kg, while d = 2.6 m, then

Thus, we get finally,

As we know, nano denoted by letter 'n' equals to 
So the force acting between two objects is 19.73 nN.
Answer:
v = 3200 m/s
Explanation:
As we know that the frequency of the sound wave is given as

wavelength of the sound wave is given as

so now we have

so we will have

