Answer:
Physical change.
A snowflake is still considered water whether its liquid or solid.
<h2>Answer: about the same size of the gap
</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that <u>the obstacle must be comparable in size (similar size) to the size of the wavelength.
</u>
<u></u>
In other words, <u>when the gap (or slit) size is larger than the wavelength</u>, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs and the waves spread out greatly.
Therefore:
<h2>
Waves diffract the most when their wavelength is <u>about the same size of the gap</u>
</h2>
Answer:
D. Newton's Third Law of Motion
Explanation:
Newton's law of gravity is definitely not applicable to your hands. So we can cross this bad boy out
Newton's First Law is F=MA (force equals mass times acceleration). This is basically the root of most physics but it isn't the reason for your hand being red after hitting a wall.
Newton's Second law deals with velocities and forces, so even though you are apply a force your are not changing the velocity of the wall much.
Newton's Third Law basically says that for whatever force you apply to an object, that object will apply an equal and opposite force back to you. This is why your hand gets red. When you slap the wall with all your strength, the wall hits your hand back with the same amount of force. The 2nd law can also be seen when you're trying to push a desk and it won't budge. You are pushing on it, but the desk is pushing back. (there are multiple other factors applicable like friction but we physicists like to ignore them :) )
I hope this helps!
Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>