Answer:
v = 7.69 x 10³ m/s = 7690 m/s
T = 5500 s = 91.67 min = 1.53 h
Explanation:
In order for the satellite to orbit the earth, the force of gravitation on satellite must be equal to the centripetal force acting on it:

where,
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Me = Mass of Earth = 5.97 x 10²⁴ kg
r = distance between the center of Earth and Satellite = Radius of Earth + Altitude = 6.371 x 10⁶ m + 0.361 x 10⁶ m = 6.732 x 10⁶ m
v = orbital speed = ?
Therefore,

<u>v = 7.69 x 10³ m/s</u>
For time period satellite completes one revolution around the earth. It means that the distance covered by satellite is equal to circumference of circle at the given altitude.
So, its orbital speed can be given as:

where,
T = Time Period of Satellite = ?
Therefore,

<u>T = 5500 s = 91.67 min = 1.53 h</u>
Acceleration is found if we have the force and mass.
With the following equation: F = ma, we can find the missing values.
F = 25n
M = 0.5 kg
a = ?
a = f/m
a = 25/0.5
a = 50
a = 50 m/s
So, the acceleration is 50 m/s^2
Answer:
Many difficulties would arise if there was a lack of uniformity in the measurement of various weights and measures between business, industry, individuals and countries. The biggest implications for a lack of uniformity are in health and safety, equity and sustainability.
Explanation:
palike nlng po
An electrons transferred and compound forms
Answer:
formation of gas bubbles at electrodes
deposition of metals at electrodes
changes in solution colour
electroplating
electrolysis