Answer:
a) 
b) 
Explanation:
The frequency of the
harmonic of a vibrating string of length <em>L, </em>linear density
under a tension <em>T</em> is given by the formula:

a) So for the <em>fundamental mode</em> (n=1) we have, substituting our values:

b) The <em>frequency difference</em> between successive modes is the fundamental frequency, since:

F=nmv
where;
n=no. of bullets = 1
m=mass of bullets=2g *10^-3
V=velocity of bullets200m/sec
F=1
loss in Kinetic energy=gain in heat energy
1/2MV^2=MS∆t
let M council M
=1/2V^2=S∆t
M=2g
K.E=MV^2/2
=(2*10^-3)(200)^2/2
2 councils 2
2*10^-3*4*10/2
K.E=40Js
H=mv∆t
(40/4.2)
40Js=40/4.2=mc∆t
40/4.2=2*0.03*∆t
=158.73°C
Answer:
a) 0.462 m/s^2
b) 31.5 rad/s
c) 381 rad
d) 135m
Explanation:
the linear acceleration is given by:

the angular speed is given by:

to calculate how many radians have the wheel turned we need the apply the following formula:

the distance is given by:


We know that velocity is equal to the total displacement of an object over time.

Deriving from that equation, we can say that:

Okay, so here it goes:

The bicycle took 25.02 seconds to displace at 58.3 meters.