1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
3 years ago
14

Which of the following is true about the Solar System?

Physics
2 answers:
umka2103 [35]3 years ago
7 0

Answer:

Most of the planets have moons.

Explanation:

Elodia [21]3 years ago
5 0
There's no answers......

You might be interested in
The internal energy of material is determined by
Mnenie [13.5K]
The combined amount of kinetic and potential energy of its molecules
6 0
3 years ago
Why is a concave mirror is used a reflector in a torch light?​
tatiyna

Answer:

diverging light rays of the bulb are collected by the reflector.

Explanation:

4 0
2 years ago
Read 2 more answers
Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C wit
snow_lady [41]

The inlet velocity is 1.4 m/s and inlet volume is 0.019 m³/s.

Explanation:

When water entering the tube of constant diameter flows through the tube, it exhibits continuity of mass in the hydrostatics. So the mass of water moving from the inlet to the outlet tend to be same, but the velocity may differ.

As per mass flow equality which states that the rate of flow of mass in the inlet is equal to the product of area of the tube with the velocity of the water and the density of the tube.

Since, the inlet volume flow is measured as the product of velocity with the area.

Inlet volume flow=Inlet velocity*Area*time

And the mass flow rate is  

Mass flow rate in the inlet=density*area*inlet velocity*time

Mass flow rate in the outlet=density*area*outlet velocity*time

Since, the time and area is constant, the inlet and outlet will be same as

(Mass inlet)/(density*inlet velocity)=Area*Time

(Mass outlet)/(density*outlet velocity)=Area*Time

As the ratio of mass to density is termed as specific volume, then  

(Specific volume inlet)/(Inlet velocity)=(Specific volume outlet)/(Outlet velocity)

Inlet velocity=  (Specific volume inlet)/(Specific volume outlet)*Outlet velocity

As, the specific volume of water at inlet is 0.001017 m³/kg and at outlet is 0.05217 m³/kg and the outlet velocity is given as 72 m/s, the inlet velocity

is

Inlet velocity = \frac{0.001017}{0.05217}*72 =1.4035 m/s

So, the inlet velocity is 1.4035 m/s.

Then the inlet volume will be

Inlet volume = inlet velocity*area of circle=\pi  r^{2}*inlet velocity

As the diameter of tube is 130 mm, then the radius is 65 mm and inlet velocity is 1.4 m/s

Inlet volume = 1.4*3.14*65*65*10^{-6} =0.019 \frac{m^{3} }{s}

So, the inlet volume is 0.019 m³/s.

Thus, the inlet velocity is 1.4 m/s and inlet volume is 0.019 m³/s.

4 0
3 years ago
6. Mr. Leppold jumps out of a plane with a parachute...before the chute opens,
polet [3.4K]

1) He has both potential and kinetic energy

2) Before the parachute opens, the potential energy decreases and the kinetic energy increases

Explanation:

1)

The gravitational potential energy of a body is the energy possessed by the object due to its position in a gravitational field, and it is given by:

PE=mgh

where

m is the mass of the body

g is the acceleration of gravity

h is the height of the body above the ground

On the other hand, the kinetic energy of a body is the energy possessed by the body due to its motion; it is given by

KE=\frac{1}{2}mv^2

where

v is the speed of the object

Here Mr. Leppold has both potential and kinetic energy before opening the parachute, because:

- It is moving at a certain speed, so v\neq 0, therefore he has kinetic energy

- He is at a certain height above the ground, h\neq 0, therefore he has potential energy

2)

The total mechanical energy of Mr.Leppold is the sum of the potential and the kinetic energy:

E=PE+KE

According to the law of conservation of energy, in absence of air resistance, this quantity remains constant.

During the fall, the height of Leppold decreases: this means that as h decreases, the potential energy decreases  too.

However, the total energy E must remain constant: therefore, this means that the kinetic energy KE must increase, and this occurs because the speed of Mr. Leppold increases as he falls.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

8 0
3 years ago
An aluminum wing on a passenger jet is 35 m long when its temperature is 17°C. At what temperature would the wing be 3 cm (0.03
Mnenie [13.5K]

Answer:

53.32°C

Explanation:

Length of the aluminium wing = 35 m

Change in length of aluminium wing = 0.03 m

The linear expansion coefficient of aluminium \alpha =23.6\times 10^{-6}/^{\circ}C

We know that change in length is given by \Delta L=L\alpha \Delta T

So 0.03=35\times 23.6\times 10^{-6}\Delta T

\Delta T=36.32^{\circ}C

So final temperature =T_I+\Delta T=17+36.32=53.3196^{\circ}C

5 0
3 years ago
Other questions:
  • Which statement(s) correctly compare the masses of protons, neutrons, and electrons? Check all that apply
    5·2 answers
  • Two slits separated by a distance of d = 0.12 mm are located at a distance of D = 0.63 m from a screen. The screen is oriented p
    11·1 answer
  • Is orange juice in an orange potential energy or kinetic energy?
    12·2 answers
  • A slingshot fi res a pebble from the top of a building at a speed of 14.0 m/s. The building is 31.0 m tall. Ignoring air resista
    8·1 answer
  • If the average mass of an adult is 86kg. Determine the mass and weight of an 86kg man in the moon where gravitational field is o
    12·1 answer
  • I need help with this physics question, "A skateboarder rolled down the sidewalk with an initial velocity of 2.5m/s. If her acce
    6·1 answer
  • What is the time constant of a series circuit where the capacitor is 0.330μF and the resistor is 10Ω ?
    8·1 answer
  • I’m on a test please help me
    10·1 answer
  • Which has more kinetic energy, a basketball rolling at a walking pace or a baseball rolling at the pace of someone running? How
    12·1 answer
  • Please help need this asap
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!