Answer:
Physical Properties of Carbon:
Carbon is a unique element. It occurs in many forms. Some examples of the pure form of carbon are coal and soot.
It is soft and dull grey or black in colour.
One of the most important compounds of carbon is the charcoal, which is formed when carbon is heated in the absence in of air.
It occurs in a number of allotropic forms. Allotropes are nothing but forms of an element with varying physical as well as chemical properties.
The density of the different forms of carbon depends upon the origin of these elements. You will find some forms of carbon which are pure and some forms which are not pure like coal which is the mixture of both carbon and hydrogen.
Chemical Properties of Carbon
Carbon compounds generally show 4 reactions, they are
Combustion reaction
Oxidation reaction,
Addition reactions
Substitution reaction.
As we all know that carbon in all forms needs oxygen, heat, and light and forms carbon dioxide. When it is burned in air to give carbon dioxide, it is called as combustion.
Let us get the concept of this using some examples when it is burnt in the air: When methane CH4 is burnt in the presence of oxygen it gives us carbon dioxide, heat, and light.
Explanation:
<span>Energy is calculated by molecule dividing energy by mole by Avogadro's number (6.022*10^23)
941kJ=9.41*10^5 J
so energy by molecule
E= 9.41*10^5/6.022*10^23=1.563*10^-18 J
Wavelength (w) given by E=hc/w
where, E = energy
h = planks constant (6.6262 x 10-34 J·s)
c = speed of light (3 x 10^8 m/s )
So,
w= hc/E
= (6.6262*10^-34)*(3*10^8) /1.563*10^-18
= 127.2 Nm
Longest wavelength of radiation =127.2 Nm</span>
Answer:
Explanation:
Using the atomic mass of pluonium atoms (244 g/mol), you can calculate the number of atoms in 47.0 g. Then, knowing that each plutonium atom has 96 protons, you calculate the number of protons in the 47.0 g sample. Finally, using the positive charge of one proton, you calculate the total positive charge in the 47.0 g of plutonium.
<u>1. Number of atoms of plutonium in 47.0 g</u>
- Number of moles = mass / atomic mass = 47.0 g / 244 = 0.1926 moles
- Number of atoms = number of moles × 6.022 × 10²³ atoms/mol
- Number of atoms = 0.1926 mol × 6.022 × 10²³ atoms/mol = 1.15998×10²³ atoms
<u>2. Number of protons</u>
- Number of protons = 1.15998×10²³ atoms × 96 protons/atom = 1.11385×10²⁵ protons
<u>3. Charge</u>
<u />
- Charge = charge of one proton × number of protons
- Charge = 1.602×10⁻¹⁹ C/proton × 1.11385×10²⁵ protons = 1.78×10⁶C
Answer:
Part A:

Part B:
Option B (Towards the South)
Explanation:
Part A:
Magnitude if electric field E:
E=Force/charge
Force=2.04×10−14 N
Charge=1.6×10−19 C

Part B:
Option B (Towards the South)
As electron is experiencing the force towards south,it means the direction of the electric field is towards the south because direction of field lines is from positive to negative, so proton is moving towards south it means negative charge is in south to which proton is attracted. So electric field is towards South.
2,062,305 2,062,305 <span>2,062,305</span>