Given:
The mass of the halfback is m = 107 kg
The speed of the halfback is v = 8 m/s
To find the momentum.
Explanation:
The momentum of the halfback is

Thus, the momentum of the halfback is 856 kg m/s
"Temperature is the measure of the average kinetic energy of the particles in a substance, which is related to how hot or cold that substance is. Historically, two equivalent concepts of temperature have developed, the thermodynamic description and a microscopic explanation based on statistical physics"
Answer:
8.57 Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
The velocity, wavelength and frequency of a wave are related according to the equation:
Velocity = wavelength × frequency
v = λ × f
With the above formula, we can simply obtain the frequency of the wave as follow:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
v = λ × f
30 = 3.5 × f
Divide both side by 3.5
f = 30 / 3.5
f = 8.57 Hz
Thus, the frequency of the wave is 8.57 Hz
<span>the answer would be 3,959 miles</span>
You haven't said what 'high' resistance or 'low' current means, so there's way not enough info to nail the statement as true or false. The most precise answer is "certainly could be but not necessarily". Anyway, the current in the circuit depends on BOTH the resistance AND the voltage. So without knowing the voltage too, you can't say anything about the current.