This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
This is solved by setting up two equations and then using one to answer the other.
The first step (use what is given to set up the two separate equations)
We are looking for two numbers, let us call them X and Y.
We are told that X + Y = 59
We are also told that (9 more than) 9+ (4times the smaller number) 4Y is the bigger number X
Then we combine that into 9+4Y=X
so we now have two separate equations and we can use one to solve the other. Everywhere we have X in the first equation, we will fill in with the second equation
(9+4Y) +Y = 59 [then combine like terms]
9+5Y=59 [subtract 9 from both sides]
5Y=50 [divide both sides by 5 to isolate the Y]
Y=10 [now plug this into either equation to solve for X]
9+4(10)=X
9+40=X
<u><em>49=X and 10=Y</em></u>
Answer:
B. One
Step-by-step explanation:
Since the two angles are already given, the value of the third angle is already fixed. The third angle can be found by the sum of both angles subtracted from 180. Since 2 angles and lengths are already given, there can only be 1 triangle.
Hope this helps!
If not, I am sorry.
Answer:
The square root of 4 is 2
Step-by-step explanation: