The common component of air pollution is particulate matter (PM). This is a complex mixture of extremely small particles and liquid droplets.
The major components of PM are sulphates, nitrates, ammonia, sodium chloride, black carbon, dust particles and water. PM comes from dust , soot, smoke, industry and vehicle exhaust as well as complex chemical reactions with other pollutants.
Burning of fossil fuels produces sulphur dioxide . It is a colorless gas that pollutes the air and can cause health problems affecting the respiratory system.
Answer:
The question is incomplete, it lacks the mRNA sequence. The sequence is as follows:
5′−AUGGCAAGAAAA−3′
The answer is Met-Ala-Arg-Lys
Explanation:
Gene expression in living organisms involves the process of transcription and translation. Transcription is the synthesis of a complementary strand of mRNA from a DNA template while translation involves using the transcibed mRNA as a template to synthesize amino acid sequence (proteins).
In the RIBOSOME, where the synthesis of protein occurs, the mRNA nuceleotide sequence is read in a group of three nucleotides called CODON. Each codon specifies a particular amino acid. The collection of all codons is the genetic code. Hence, for a specific mRNA sequence that reads 5′−AUGGCAAGAAAA−3′. The nucleotides will be read three at a time starting with AUG which is a codon that encodes METHIONINE.
Next, GCA is a codon that encodes ALANINE
Next, AGA is a codon that encodes ARGININE
Finally, AAA is a codon that encodes LYSINE.
Hence, the amino acid sequence using the above mRNA sequence, will read: Met-Ala-Arg-Lys
They work on the premise of a fluid interacting with a turbine
<span> RNA was thought of as little more than a messenger between DNA and proteins, carrying instructions as messenger RNA (mRNA) to build proteins. However, RNA can do far more. It can drive chemical reactions, like proteins, and carries genetic information, like DNA. And because RNA can do both these jobs, most scientists think life as we know it began in an RNA world, without DNA and proteins.</span>
C. nucleic acids (consisting of genes which encode for specific proteins to be synthetized)