The net external force is 31.4 N
Explanation:
We can solve this problem by applying Newton's second law, which states that the net force acting on an object is equal to the product between its mass and its acceleration:

where
F is the net force
m is the mass
a is the acceleration
For the object in this problem, we have:
m = 9.5 kg is the mass
is the acceleration
Solving for F, we find the net force:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
The height need to change by 4 to double the final velocity.
<h3>Final velocity of the object</h3>
The final velocity of an object during a free fall is related to maximum height of fall as given the equation below.
v = √2gh
v² = 2gh
v²/h = 2g
v₁²/h₁ = v₂²/h₂
when v₂ = 2v₁, change in height is calculated as;
h₂ = h₁v₂²/v₁²
h₂ = (h₁ (2v₁)²) / (v₁)²
h₂ = 4h₁v₁² / v₁²
h₂ = 4h₁
Thus, the height need to change by 4 to double the final velocity.
Learn more about final velocity here: brainly.com/question/25905661
#SPJ1
To solve this problem it is necessary to apply the concepts related to Sound Intensity. The unit most used in the logarithmic scale is the decibel and mathematically this is expressed as

Where,
= Sound intensity level in decibels
I = Acoustic intensity on the linear scale
Hearing threshold
According to the values, the total intensity is 32 times the linear intensity and the value in decibels is 83dB
So:




Therefore the sound intensity due to one person is 67.948dB
Answer: Longitudinal wave
Explanation:
Longitudinal wave are the oscillations that are parallel to the direction of energy transfer that means the vibrations are in line with the direction where the energy is travelling.
A key feature of sound wave is that they cause sound particles to vibrate. The region where the particles are close together are called compressions and regions where particles are further apart they are called rarefactions.
The other options explanation:
-Transverse waves are where the oscillations are perpendicular to the energy of transfer.
-A standing wave is where the waves are travelling back and forth where there are some fixed points in the system whilst other vibrate with highest amplitude
-Surface waves have both the characteristics of longitudinal and transverse waves