Answer:
Explanation:
Let the initial velocity of small block be v .
by applying conservation of momentum we can find velocity of common mass
25 v = 75 V , V is velocity of common mass after collision.
V = v / 3
For reaching the height we shall apply conservation of mechanical energy
1/2 m v² = mgh
1/2 x 75 x V² = 75 x g x 10
V² = 2g x 10
v² / 9 = 2 x 9.8 x 10
v² = 9 x 2 x 9.8 x 10
v = 42 m /s
small block must have velocity of 42 m /s .
Impulse by small block on large block
= change in momentum of large block
= 75 x V
= 75 x 42 / 3
= 1050 Ns.
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be ![f_{1}](https://tex.z-dn.net/?f=f_%7B1%7D)
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Answer:
In a chemical reaction the total mass of all the substances taking part in the reaction remains the same. Also, the number of atoms in a reaction remains the same. Mass cannot be created or destroyed in a chemical reaction.
Explanation:
Nuclear energy is released during: fission. radioactive decay. man-induced splitting of atoms. Match the basic components of a nuclear reactor with their descriptions. 1. slows down neutrons -> moderator. 2. absorb emitted neutrons -> control rods.
I think:
In motion- 40
Not moving- 20