(a) The net flux through the coil is zero.
In fact, the magnetic field generated by the wire forms concentric circles around the wire. The wire is placed along the diameter of the coil, so we can imagine as it divides the coil into two emisphere. Therefore, the magnetic field of the wire is perpendicular to the plane of the coil, but the direction of the field is opposite in the two emispheres. Since the two emispheres have same area, then the magnetic fluxes in the two emispheres are equal but opposite in sign, and so they cancel out when summing them together to find the net flux.
(b) If the wire passes through the center of the coil but it is perpendicular to the plane of the wire, the net flux through the coil is still zero.
In fact, the magnetic field generated by the wire forms concentric lines around the wire, so it is parallel to the plane of the coil. But the flux is equal to

where

is the angle between the direction of the magnetic field and the perpendicular to the plane of the coil, so in this case

and so the cosine is zero, therefore the net flux is zero.
Answer:
series
Explanation:
In a series circuit all the components are attached to one branch, so that if one component fails, all the others stop working. In a parallel circuit, however, the components are wired in separate branches, so that even if one branch fails, the rest are not disrupted.
It's b, because the more force an object it is given the harder it will be for it to slow down.
The answer to that question is c. tamod
The constants could be the day because the experiment is all on the same day or the person throwing the pumpkin because it will always be the same perosn