Check the picture below.
since we know the radius of the larger semicircle is 8, thus its diameter is 16, which is the length of one side of the equilateral triangle. We also know the smaller semicircle has a radius of 1/3, and thus a diameter of 2/3, namely the lenght of one side of the small equilateral triangle.
now, if we just can get the area of the larger figure and the area of the smaller one and subtract the smaller from the larger, we'll be in effect making a hole/gap in the larger and what's leftover is the shaded figure.
![\bf \stackrel{\textit{area of a semi-circle}}{A=\cfrac{1}{2}\pi r^2\qquad r=radius}~\hspace{10em}\stackrel{\textit{area of an equilateral triangle}}{A=\cfrac{s^2\sqrt{3}}{4}\qquad s=\stackrel{side's}{length}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\left[ \stackrel{\textit{larger figure}}{\cfrac{1}{2}\pi 8^2~~+~~\cfrac{16^2\sqrt{3}}{4}} \right]\qquad -\qquad \left[ \cfrac{1}{2}\pi \left( \cfrac{1}{3} \right)^2 +\cfrac{\left( \frac{2}{3} \right)^2\sqrt{3}}{4}\right]}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20semi-circle%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20r%5E2%5Cqquad%20r%3Dradius%7D~%5Chspace%7B10em%7D%5Cstackrel%7B%5Ctextit%7Barea%20of%20an%20equilateral%20triangle%7D%7D%7BA%3D%5Ccfrac%7Bs%5E2%5Csqrt%7B3%7D%7D%7B4%7D%5Cqquad%20s%3D%5Cstackrel%7Bside%27s%7D%7Blength%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cleft%5B%20%5Cstackrel%7B%5Ctextit%7Blarger%20figure%7D%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%208%5E2~~%2B~~%5Ccfrac%7B16%5E2%5Csqrt%7B3%7D%7D%7B4%7D%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B1%7D%7B3%7D%20%5Cright%29%5E2%20%2B%5Ccfrac%7B%5Cleft%28%20%5Cfrac%7B2%7D%7B3%7D%20%5Cright%29%5E2%5Csqrt%7B3%7D%7D%7B4%7D%5Cright%5D%7D)
![\bf \left[ 32\pi +64\sqrt{3} \right]\qquad -\qquad \left[ \cfrac{\pi }{18}+\cfrac{\frac{4}{9}\sqrt{3}}{4} \right] \\\\\\ \left[ 32\pi +64\sqrt{3} \right]\qquad -\qquad \left[ \cfrac{\pi }{18}+\cfrac{\sqrt{3}}{9} \right]~~\approx~~ 211.38 - 0.37~~\approx~~ 211.01](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%2032%5Cpi%20%2B64%5Csqrt%7B3%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B%5Cpi%20%7D%7B18%7D%2B%5Ccfrac%7B%5Cfrac%7B4%7D%7B9%7D%5Csqrt%7B3%7D%7D%7B4%7D%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%5B%2032%5Cpi%20%2B64%5Csqrt%7B3%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B%5Cpi%20%7D%7B18%7D%2B%5Ccfrac%7B%5Csqrt%7B3%7D%7D%7B9%7D%20%5Cright%5D~~%5Capprox~~%20211.38%20-%200.37~~%5Capprox~~%20211.01)
Answer:
3a, 13cm 5, 1:200
Step-by-step explanation:
In the question 3 you just have to divide all of those numbers with that 5000, maybe also make them cm so it makes more sense. So 650m = 65000cm:5000= 13cm
then for the question 5, make the km to cm, so 4.2km would be 420000cm. Then you have to divide that 420000cm with the 21 cm, so 420000:21= 200. Then the scale should be 1:200
I had difficulties with these as well. If you need extra help with the task 3 please pm me :)
Step 1.
Calculate measure of angle α:

Step 2.
Calculate what fraction of the angle 360° is the angle α:

Step 3.
Calculate the circumference of the Earth (circle):

Step 4.
The length of arc is equal 1/40 of the circumference:


<h3>Answer: A) 628 miles</h3>
the line will rise more sharply than before, the slope is steeper, increased from the 2 to 2.5.
This is simple division:

So, plug it into your calculator and you get:

Your answer's that
it takes 4.5 hrs for the surveillance run.