The compound inequality that represents the two following scenarios are:
- 65 < f ≤ 4
- 8 ≤ f ≤ 12
A compound inequality usually puts together two or more simple inequalities statements together.
Following the assumption from the given information that;
- a free single scoop cone = f
<h3>1.</h3>
The age group of individuals designated to receive the free single scoop cones is:
- people who are older than 65 i.e. > 65
- children that are 4 or under 4 i.e. ≤ 4
Thus, the compound inequality that is appropriate to express both conditions is:
<h3>
2.</h3>
- On Tuesdays, the least amount of flavors = 8
- The addition amount of extra flavors they can add = 4
Now, we can infer that the total amount of flavors = 8 + 4 = 12
Thus, the compound inequality that is appropriate to express both conditions is:
- Least amount of flavors ≤ f ≤ total amount of flavors
- 8 ≤ f ≤ 12
Therefore, we can conclude that the compound inequality that represents the two following scenarios are:
- 65 < f ≤ 4
- 8 ≤ f ≤ 12
Learn more about compound inequality here:
brainly.com/question/24540195?referrer=searchResults
Answer:
12x + 50
Y - intercept = 50
Slope = 12
Step-by-step explanation:
The y - intercept represents the original registrational fee even if you have never taken lessons.
The slope represents what you have to pay every time you take a lesson.
Although the number of new wildflowers is decreasing, the total number of flowers is increasing every year (assuming flowers aren't dying or otherwise being removed). Every year, 25% of the number of new flowers from the previous year are added.
The sigma notation would be:
∑ (from n=1 to ∞) 4800 * (1/4)ⁿ , where n is the year.
Remember that this notation should give us the sum of all new flowers from year 1 to infinite, and the values of new flowers for each year should match those given in the table for years 1, 2, and 3
This means the total number of flowers equals:
Year 1: 4800 * 1/4 = 1200 ]
+
Year 2: 4800 * (1/4)² = 300
+
Year 3: 4800 * (1/4)³ = 75
+
Year 4: 4800 * (1/4)⁴ = 18.75 = ~19 (we can't have a part of a flower)
+
Year 5: 4800 * (1/4)⁵ = 4.68 = ~ 5
+
Year 6: 4800 * (1/4)⁶ = 1.17 = ~1
And so on. As you can see, it in the years that follow the number of flowers added approaches zero. Thus, we can approximate the infinite sum of new flowers using just Years 1-6:
1200 + 300 + 75 + 19 + 5 + 1 = 1,600
namely, let's rationalize the denominator in the fraction, for which case we'll be using the <u>conjugate</u> of that denominator, so we'll multiply top and bottom by its <u>conjugate</u>.
so the denominator is 5 + i, simply enough, its conjugate is just 5 - i, recall that same/same = 1, thus (5-i)/(5-i) = 1, and any expression multiplied by 1 is just itself, so we're not really changing the fraction per se.

Answer:
Use the appropriate entry method for piecewise functions for the graphing calculator of interest.
Step-by-step explanation:
For Desmos, the entry looks like ...
f(x) = {x ≤ 2: -2x-1,-x+4}
_____
For a TI-84 calculator, the entry may look like ...
Y₁ = (-2X–1)(X≤2) + (-X+4)(X>2)
The symbols ≤ and > come from the TEST menu, which is the (2nd) shift of the MATH key.
Note that the function is the sum of the pieces, each piece multiplied by a test. For something like 0≤x<2, the multiplier would be a pair of tests:
... (0≤X)(X<2)