1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
3 years ago
9

Let L: R2 --> R2 be a linear operator.If L((1,2)T) = (-2,3)Tand L((1,-1)T) = (5,2)TFind the value of L((7,5)T

Mathematics
1 answer:
devlian [24]3 years ago
3 0

Answer: L((7,5)T)=(7, 18)T

Step-by-step explanation:

The step by step explanation is given in picture.

You might be interested in
Rosa wants to use $25.00 to buy games. The inequality
Dafna11 [192]

Answer:

she can buy 5 roses

Step-by-step explanation:

8 0
3 years ago
The distance between Logan airport and Framingham a car can cover in 20 min. Logan Express bus can cover this distance in 30 min
Ronch [10]
That's a pretty confusing one. I think it's 10 minutes.
4 0
4 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Can someone tell me the answer
Blizzard [7]
See the photo attached for the answers

7 0
3 years ago
What's -5x – 10 = 10
Nikitich [7]
-5x-10=10   x= -4

Work:
-5x-10=10
     +10  +10
______________
-5x=20
_______
-5    -5

x=-4


3 0
3 years ago
Read 2 more answers
Other questions:
  • Angles F and H are congruent.
    7·2 answers
  • I think it's a-b squared.
    5·1 answer
  • Amalia used 8 lemons to make a picture of lemonade that served six people. How many lemons would she need to make enough lemonad
    12·1 answer
  • Brad and Tom are comparing their classes scores on a math test . Both of their classes had mean scores of 80 on the test, but Br
    11·1 answer
  • A 9.0 ladder rests against the side of a wall. The bottom of the ladder is 1.5 meters from the base of the wall. Determine the m
    10·1 answer
  • Solve the equation. If necessary, round your answer to the nearest tenth.
    10·2 answers
  • Anyone here understand this? please help!
    9·1 answer
  • 4 students is ______ % of 20 students
    12·1 answer
  • The sum of two numbers is 1. The sum of
    11·1 answer
  • If 3x + 6 = 21, what does x + 2x plus 2 equal?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!