Answer:
E(X) = 6
Var(X) = 3.394
Step-by-step explanation:
Let X represent the number of carp caught out of the 20 fishes caught. Now, if we are to assume that each
of the (100, 20) ways to catch the 20 fishes will be equally likely.
Thus, we can say that X fulfills a hypergeometric
distribution with parameters as follows;
n = 20, N = 100, k = 30
Formula for expected mean value in hypergeometric distribution is;
E(X) = nk/N
E(X) = (20 × 30)/100
E(X) = 6
Formula for variance is;
Var(X) = (nk/N) × [((n - 1)(k - 1)/(N-1))) + (1 - nk/N)]
Var(X) = ((20 × 30)/100) × [((20 - 1)(30 - 1)/(100 - 1)) + (1 - (20 × 30/100)]
Var(X) = 6 × 0.5657
Var(X) = 3.394
Step-by-step explanation:
The hands of a clock point in opposite directions ( in the same straight line) 11 times in every 12 hours.
I believe it is option 2, sorry if incorrect
Don't understand this either
Answer:
c) if x=2, then 4x=8
Step-by-step explanation: