Answer:
The sample size required is 910.
Step-by-step explanation:
The confidence interval for population proportion is:
![CI=\hat p\pm z_{ \alpha /2}\sqrt{\frac{\hat p(1-\hat p)}{n} }](https://tex.z-dn.net/?f=CI%3D%5Chat%20p%5Cpm%20z_%7B%20%5Calpha%20%2F2%7D%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%20%7D)
The margin of error is:
![MOE=z_{ \alpha /2}\sqrt{\frac{\hat p(1-\hat p)}{n} }](https://tex.z-dn.net/?f=MOE%3Dz_%7B%20%5Calpha%20%2F2%7D%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%20%7D)
Given:
![\hat p = 0.16\\MOE= 0.02\\Confidence\ level =0.90](https://tex.z-dn.net/?f=%5Chat%20p%20%3D%200.16%5C%5CMOE%3D%200.02%5C%5CConfidence%5C%20level%20%3D0.90)
The critical value of <em>z</em> for 90% confidence level is:
*Use a standard normal table.
Compute the sample size required as follows:
![MOE=z_{ \alpha /2}\sqrt{\frac{\hat p(1-\hat p)}{n} }\\0.02=1.645\times \sqrt{\frac{0.16(1-0.16)}{n} }\\n=\frac{(1.645)^{2}\times 0.16\times (1-0.16)}{(0.02)^{2}} \\=909.2244\\\approx910](https://tex.z-dn.net/?f=MOE%3Dz_%7B%20%5Calpha%20%2F2%7D%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%20%7D%5C%5C0.02%3D1.645%5Ctimes%20%5Csqrt%7B%5Cfrac%7B0.16%281-0.16%29%7D%7Bn%7D%20%7D%5C%5Cn%3D%5Cfrac%7B%281.645%29%5E%7B2%7D%5Ctimes%200.16%5Ctimes%20%281-0.16%29%7D%7B%280.02%29%5E%7B2%7D%7D%20%5C%5C%3D909.2244%5C%5C%5Capprox910)
Thus, the sample size required is 910.
We know that they have:
2 entrences
3 ways to chose (escalator,elevator and stairs)
8 gates
and again 3 ways to chose (escalator, elevator and stairway)
now you have to multiply it:
![2*3*8*3=6*8*3=48*3=144](https://tex.z-dn.net/?f=2%2A3%2A8%2A3%3D6%2A8%2A3%3D48%2A3%3D144)
There are 144 different ways that Anita and Terry can go from street level to the trains:)
Answer:
10/6
Step-by-step explanation:
I think that it is so that you can find were it is on the graghing paper n