Answer:
One complete revolution around a circular path.
Explanation:
Let us take the case of a car moving in a circular track of radius r metres.
In one revolution, the car covers the length(distance) equal to the perimeter of the circle.
In this case, distance traveled = 2
r metres
But after one complete revolution, the car reaches the same position as it was at the beginning of the motion.
Hence, the initial and final points coincide or the car hasn't changed it's position w.r.t the initial point.
So in this case, the displacement is zero.
Hence, revolution of a car around a circular path is an example of an object traveling a distance but having no displacement.
Answer:
See Explanation
Explanation:
The Law of Conservation of Matter as applied to chemical reactions says that matter is neither created nor distroyed, only changed in form. This implies that the mass of substances going into a reaction process must equal the mass of products generated during the reaction process.
Empirically,
∑ mass reactants = ∑ mass products
One can test this idea after balancing a chemical equation by determining the sum of formula weights of reactants and products; then compare. If reaction was properly balanced, the total mass reactants = total mass of products.
Example:
Combustion of Methane => CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(l)
Equation Weights => 16amu + 64amu <=> 44amu + 36amu
Mass Reactants = Mass Products => 80amu <=> 80amu.
__________________
*amu = atomic mass units => sum of atomic weights of elements
Answer:
An increase in entropy
Explanation:
In ice, the molecules are very well ordered because of the H-bonds. As ice melts, the intermolecular forces are broken (requires energy), but the order is interrupted (so entropy increases). Water is more random than ice, so ice spontaneously melts at room temperature.
Just think about this rationally. Melting ice (or anything) will require heat put in (this is called the latent heat of fusion), so you automatically know that the change in enthalpy is going to be positive. In order to make the reaction spontaneous, delta G, the Gibbs free energy has to be negative. So now look at the formula Delta(G) = Delta(H) - T*Delta*(S). If you know that g is negative, and H is positive, then it is only possible if -T*Delta(S) is negative. If that is positive, then Delta(S) has to be positive. So theres your answer :). An increase in entropy
The answer is A. because as you can see it pulls the force
Answer:
Option E, Half life = 
Explanation:
For a first order reaction, rate constant and half-life is related as:

Where,
= Half life
k = Rate constant
Rate constant given = 


So, the correct option is option E.