Answer:
D
Explanation:
Metallic character decreases as you move across a period in the periodic table from left to right. This occurs as atoms more readily accept electrons to fill a valence shell than lose them to remove the unfilled shell. Metallic character increases as you move down an element group in the periodic table. This is because electrons become easier to lose as the atomic radius increases, where there is less attraction between the nucleus and the valence electrons because of the increased distance between them.
Answer:
Explanation:
Just saw your request regarding answering this so here it is:
All of them belong of Group 1 in periodic table and thus are highly reactive! Pattern of reactivity for Group 1 (Alkali metals) increases as you move down the group as their radius keeps increasing and thus electrons can be easily lost. Thus, to ID the lumps, Sheena should look at their reactivity and she should get the following trend:
Most reactive: Potassium (K)
Intermediate: Sodium (Na)
Least reactive: Lithium (Li)
Hope it helps!
Answer:
44 grams/mole
Explanation:
<u>If 1 mol of XO₂ contains the same number of atoms as 60 g of XO3, what is the molar mass of XO₂?</u>
<u></u>
60 grams of XO3 is one mole XO3, since it has the same number of atoms as 1 mole of XO2.
Let c be the molar mass of X. The molar mass of XO3 is comprised of:
X: c
3O: 3 x 16 = 48
Total molar mass of XO3 is = <u>48 + c</u>
We know that the molar mass of XO3 = 60 g/mole, so:
48 + c = 60 g/mole
c = 12 g/mole
The molar mass of XO2 would be:
1 X = 12
2 O = 32
Molar mass = 44 grams/mole, same as carbon dioxide. Carbon's molar mass is 12 grams.
<u></u>
<u></u>
2.392 hectoliters = 239.2 liters. 1 hectoliter = 100 liters.
Answer:
A
Explanation:
A formal charge (FC) is the charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity(Wikipedia).
The formal charge on an atom in a molecule reflects the electron count associated with the atom compared to the isolated neutral atom(University of Calgary).
Looking at all the structures listed A-E for SeO2F2, only structure A minimizes the formal charges for each atom in SeO2F2.