Answer:
Dispersion forces.
Explanation:
CO2 contains dispersion forces, and covalent bonds. It is a linear molecule, and the bond angle of O-C-O is 180 degree. O is more electronegative than C, the C-O contains polar bond with the having negative end pointing towards the O.
CO contains two C-O bonds. They cancel each other out because of the dipoles point in opposite directions. Although, CO2 contains polar bonds, it is known as a nonpolar molecule. So, the only intramolecular forces which CO2 having are London dispersion forces.
To ensure that the 9-Fluorenone was totally dry, it had to be washed with methylene chloride. To make sure that methylene chloride is present in a pure solution, sodium sulfate binds to water and precipitates.
<h3>
What is the purpose of the sodium sulfate?</h3>
- Although it has numerous additional uses, sodium sulfate is primarily employed in the production of detergents and in the Kraft process of paper pulping.
- The decahydrate's natural mineral form, mirabilite, accounts for about half of the world's output, with the other half coming from chemical byproducts. Sodium sulfate was used as a drying, isolating, and anhydrous salt for the 9-fluorenone.
- To make sure that methylene chloride is present in a pure solution, sodium sulfate binds to water and precipitates.
- The sodium salt of sulfuric acid is known as sodium sulfate. Na2SO4 is the chemical formula for sodium sulfate. The mineral thenardite, which is also known as anhydrous sulfate, is described as a white, crystalline solid, whereas the decahydrate Na2SO4. 10H2O is also known as Glauber's salt or the mirabilis salt.
To know more about sodium sulfate, refer:
brainly.com/question/23509646
#SPJ4
Answer:
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Explanation:
Recall that , depression present in freezing point is calculated with the formulae = solute particles Molarity x KF
0.3473 = m * 1.86
Solving, m = 0.187 m
Moles of HClO2 = mass / molar mass = 5.85 / 68.5 = 0.0854 mol
Molality = moles / mass of water in kg = 0.0854 / 1 = 0.0854 m
Initial molality
Assuming that a % x of the solute dissociates, we have the ICE table:
HClO2 H+ + ClO2-
initial concentration: 0.0854 0 0
final concentration: 0.0854(1-x/100) 0.0854x/100 0.0854x / 100
We see that sum of molality of equilibrium mixture = freezing point molality
0.0854( 1 - x/100 + x/100 + x/100) = 0.187
2.1897 = 1 + x / 100
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
<span>B)<span>C2H6O<span>2
</span></span></span>
First, convert each percentage to grams: 38.7g, 9.70g, and 51.6g.
Next, calculate the number of moles of each element, based on the number of grams given.
C = 3.23 mol
H = 8.91 mol
O = 3.23 mol
Set up the ratio of moles of each element:
C3.34H9.70O3.23. Convert the decimals to whole numbers by dividing by the smallest subscript, 3.23.
The empirical formula is CH3O.
Now, compute the formula mass, which is 31. Finally, divide the molecular mass by the formula mass, 62/31 = 2. Multiple the subscripts by 2 to get the molecular formula.
Not sure if this is what you mean but l= A/w
(length equals area divided by width)