Based on the options above, I see how the last option would actually be most fitting to how "the part of the electromagnetic spectrum that is visible to the human eye". This would be in separate parts, which would be divided into a certain number, which would actually be only 7 ranges of wavelengths. And therefore, this last statement would actually go very well and it would actually be the correct answer. And this would all relate to how <span> the part of the electromagnetic spectrum that is visible to the human eye, it's based on it's own 7 division parts that it has.
Your answer: </span>
Answer:
-6.0 m/s, 10.4 m/s
Explanation:
To find the x- and y- components, we have to apply the formulas:


where
v = 12.0 m/s is the magnitude of the vector
is the angle between the direction of the vector and the positive x-axis
Here, the angle given is the angle above the negative x-axis; this means that the angle with respect to the positive x-axis is

So, the two components are:


Answer:
One when it enters the glass slab from air and second time when it enters the air through glass slab. When light rays travelling through air enters glass slab, they get refracted and bend towards the normal. Now the direction of refracted ray changes again when it comes out of the glass slab into air.
Answer:
1st one
identity of the H₂O
When water (H2O) freezes into ice, some of the properties have changed but the identity of the H2O is the same. Explanation; Water can exist in liquid, solid; ice and gaseous state; steam. Freezing occurs when water is continuously cool until it turns to solid ice, water freezes at zero degree Celsius
Hope This Helps
Answer:

The Magnitude of electric field is in the upward direction as shown directly towards the charge
.
Explanation:
Given:
- side of a square,

- charge on one corner of the square,

- charge on the remaining 3 corners of the square,

<u>Distance of the center from each corners</u>


∴Distance of center from corners, 
Now, electric field due to charges is given as:

<u>For charge
we have the field lines emerging out of the charge since it is positively charged:</u>

<u>Force by each of the charges at the remaining corners:</u>

<u> Now, net electric field in the vertical direction:</u>


<u>Now, net electric field in the horizontal direction:</u>


So the Magnitude of electric field is in the upward direction as shown directly towards the charge
.