Complete Question
The complete question is shown on the first uploaded image
Answer:
The <u>Fruit juice </u> should be put in the cooler, because <u>it has the greatest heat capacity</u> and will therefore, <u>absorb the most heat for each degree it increases in temperature.</u>
Explanation:
in order to understand the answer above we need to know what specific heat capacity is
Specific heat capacity can be defined as the amount of heat required to raise the temperature of a unit mass of a substance by one degree
Looking at the specific heat of each substance suggested we see that the fruit juice has a higher specific heat capacity than others this is because it contains a higher amount of water , generally liquid states of substances have a higher specific heat capacity than other states. The specific heat capacity of fruit juice being the highest among the suggested substances means that it can absorb more heat for each degree temperature of refrigerator.
Answer:
The induced emf between two end is
V
Explanation:
Given:
Length of rod
m
Height
m
Magnetic field
T
For finding induced emf,

Where
velocity of rod,
For finding the velocity of rod.
From kinematics equation,

Where
initial velocity, 



Put the velocity in above equation,

V
Therefore, the induced emf between two end is
V
The answer:
<span>When the elevator accelerates upward at a rate of 3.6 m/s², the value of the acceleration becomes
</span>A=g+3.6=13.4 m/s²
and by using the newton's law, F=mass x A, we have
T1= (24 + 90 )x 13.4= 1527.6 N, where T1 is the <span>Tension in upper rope
</span> and
T2= ( 90 )x 13.4= 1206N, where T2 is the Tension in lower rope
When the elevator accelerates downward at a rate of 3.6 m/s², the value of the acceleration becomes
A=9.8 - 3.6 = 6.2 m/s²
T1= (24 + 90 )x 6.2= 706.8 N, where T1 is the Tension in upper rope
and
T2= ( 90 )x 6.2= 558N, where T2 is the Tension in lower rope
49 J is the total kinetic energy. If a bowling ball of mass 7.3 kg and radius 9.6 cm rolls without slipping down a lane at 3.1 m/s. Kinetic energy is the energy an bowling ball has because of its motion.
Given: m = 7.3 Kg ; r = 9.4 cm = 0.094 m ; v = 3.1 m
Now total kinetic energy in this case is given by KE = Kinetic energy due to rotation + Kinetic energy due to translation
i,e KE = 1/2*m*v2 + 1/2*I*ω2 where I is the moment of inertia of the bowling ball about it's center and ω is the angular velocity
Now for pure rotation (without slipping) v = rω
also for the ball (solid sphere) I = 2/5*m*r2
Hence our kinetic energy becomes
KE = 1/2*m*v2 + 1/5*m*v2 = 7/10*m*v2
so KE = 0.7*7.3*(3.1)2 = 49.10 J = 49 J
Learn more about kinetic energy here
brainly.com/question/12669551
#SPJ4
Answer:
P= 1000W, t = 1s ⇒ E = Pt = 1000 ∗ 1 = 1000J
Explanation: Power is the rate of doing work or of transferring heat per unit of time, or, in other words, power is the rate of transferred energy per unit of time
Explanation: