1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
12

Calculate the electric field at the center of a square

Physics
1 answer:
pantera1 [17]3 years ago
8 0

Answer:

E_y=1175510.2\ N.C^{-1}

The Magnitude of electric field is in the upward direction as shown directly towards the charge q_1.

Explanation:

Given:

  • side of a square, a=52.5\ cm
  • charge on one corner of the square, q_1=+45\times 10^{-6}\ C
  • charge on the remaining 3 corners of the square,q_2=q_3=q_4=-27\times 10^{-6}\ C

<u>Distance of the center from each corners</u>=\frac{1}{2} \times diagonals

diagonal=\sqrt{52.5^2+52.5^2}

diagonal=74.25\cm=0.7425\ m

∴Distance of center from corners, b=0.3712\ m

Now, electric field due to charges is given as:

E=\frac{1}{4\pi\epsilon_0}\times \frac{q}{b^2}

<u>For charge q_1 we have the field lines emerging out of the charge since it is positively charged:</u>

E_1=9\times 10^9\times \frac{45\times 10^{-6}}{0.3712^2}

  • E_1=2938775.5\ N.C^{-1}

<u>Force by each of the charges at the remaining corners:</u>

E_2=E_3=E_4=9\times 10^9\times \frac{27\times 10^{-6}}{0.3712^2}

  • E_2=E_3=E_4=1763265.3\ N.C^{-1}

<u> Now, net electric field in the vertical direction:</u>

E_y=E_1-E_4

E_y=1175510.2\ N.C^{-1}

<u>Now, net electric field in the horizontal direction:</u>

E_y=E_2-E_3

E_y=0\ N.C^{-1}

So the Magnitude of electric field is in the upward direction as shown directly towards the charge q_1.

You might be interested in
A bike rider pedals with constant acceleration to reach a velocity of 7.8 m/s over a time of 4.2 s. during the period of acceler
Artyom0805 [142]

To calculate the initial velocity of the bike, we use the following equation

d=\frac{1}{2} (u+v)t.

or

u=\frac{2d}{t} -v

Here, u is initial velocity, v is final velocity, t is the time and d is the distance covered by bike.

Given, u =7.8 m/s,d= 19 m and t=4.2 s.

Substituting these values in above equation, we get

u = \frac{2 \times 19}{4.2 \ s} -7.8 m/s = 9.05 \ m/s - 7.8 \ m/s \\\\ u= 1.2 m/s.

Thus, the initial velocity of the bike is 1.2 m/s.

3 0
3 years ago
THE RIGHT ANSWER WILL RECEIVE A BRAINLESS AND POINTS AND THANKS!!! THE RIGHT ANSWER WILL RECEIVE A BRAINLESS AND POINTS AND THAN
timurjin [86]

Answer:

f_{o} = 391.67 Hz

Explanation:

The sound of lowest frequency which is produced by a vibrating sting is called its fundamental frequency (f_{o}).

The For a vibrating string, the fundamental frequency (f_{o}) can be determined by:

f_{o} = \frac{v}{2L}

Where v is the speed of waves of the string, and L is the length of the string.

L = 42.0 cm = 0.42 m

v = 329 m/s

f_{o} = \frac{329}{2*0.42}

   = \frac{329}{0.84}

f_{o} = 391.6667 Hz

The fundamental frequency of the string is 391.67 Hz.

3 0
3 years ago
In which point the electric intensity of a sphere is maximum​
g100num [7]
Here, as the charge is uniformly distributed in the sphere, we will consider s as an area of the sphere which is, s=4πr2 and r is radius of the gaussian surface shown in the figure above. From this, it can be seen that
7 0
3 years ago
Two teams of nine members each engage in tug-of-war. Each of the first team's members has an average mass of 68 kg and exerts an
diamong [38]

Answer:

(a) Acceleration  = 0.1063 m/s^2      (Second team wins)

(b) Tension in rope = 65.106 N

Explanation:

Total mass of first team = 68 * 9 = 612 kg

Total force of first team = 1350 * 9 = 12150 N

Total mass of second team = 73 * 9 = 657 kg

Total force of seconds team = 1365 * 9 = 12285 N

Difference in force = 12285 - 12150 = 135 N   (towards the second team as it has more force)

(a) For acceleration we get:

F = m * a

135 = (mass of both teams) * a

a = 135 / (612 + 657)

acceleration  = 0.1063 m/s^2      (Second team wins)

(b) Since we know the acceleration of the first team (pulling being pulled towards the second team at an acceleration of 0.1063 m/s^2) , we can find out the force required to move them:

Force required for first team = mass of first team * acceleration

Force required = 612 * 0.1063

Force required = 65.106 N

This is the force exerted on the first team through the rope, so the tension in the rope will also be 65.106 N.

7 0
3 years ago
Britain and France signed an entente and became the
V125BC [204]
<span> Allied Forces. they became the allies.</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • A string is wrapped several times around the rim of a small hoop with a radius of 8.00 cm and mass 0.180 kg. The free end of the
    15·1 answer
  • Trees are planned in roads to reduce noise. Justify the statement ​
    11·1 answer
  • 7) Straws work on the principle of the outside atmospheric pressure pushing the fluid (for example water) up the straw after you
    10·1 answer
  • A spring has a spring constant of 53N/m. How much elastic potential energy is stored in the spring in the spring when it is comp
    11·1 answer
  • A mouse jumps horizontally from a box of height 0.25m.  If the mouse jumps with a speed of 2.1 m/s, how far from the box does th
    10·2 answers
  • a net force of 1,800 N is applied to a boat causing it to accelerate at 1.5 m/s^2. what is the mass of the boat?
    7·1 answer
  • an electric motor converts electrical energy into which kind of energy? potential kinetic storage chemical​
    9·2 answers
  • How does the mass of the melted sundae compare to when it was first made? this for science
    11·1 answer
  • When do (object distance) is very large, what does the thin lens equation predict for the value of 1/f?
    11·1 answer
  • How could you increase the sliding friction between the sled and track? How could you decrease it?​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!