Answer:
length = 200 m
width = 400 m
Step-by-step explanation:
Let the length of the plaing area is L and the width of the playing area is W.
Length of fencing around three sides = 2 L + W = 800
W = 800 - 2L ..... (1)
Let A is the area of playing area
A = L x W
A = L (800 - 2L)
A = 800 L - 2L²
Differentiate with respect to L.
dA/dL = 800 - 4 L
It is equal to zero for maxima and minima
800 - 4 L = 0
L = 200 m
W = 800 - 2 x 200 = 400 m
So, the area is maximum if the length is 200 m and the width is 400 m.
Answer:
can not
Step-by-step explanation:
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Answer:
To find the scale factor for a dilation, we find the center point of dilation and measure the distance from this center point to a point on the preimage and also the distance from the center point to a point on the image.
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given a function
, we called the rate of change to the number that represents the increase or decrease that the function experiences when increasing the independent variable from one value "
" to another "
".
The rate of change of
between
and
can be calculated as follows:

For:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

And for:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

<em>Translation:</em>
Dada una función
, llamábamos tasa de variación al número que representa el aumento o disminución que experimenta la función al aumentar la variable independiente de un valor "
" a otro "
".
La tasa de variación de
entre
y
, puede ser calculada de la siguiente forma:

Para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:

Y para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:
