Answer:
I believe its 8
Step-by-step explanation:
9 + 10 + 13 + 2 +6 = 40 / 5 = 8
<u>Answer:</u>
- The solution of the inequality is x < -2.
<u>Step-by-step explanation:</u>
<u>Let's simplify the inequality first.</u>
- => -4x < 8
- => -4x/4 < 8/4
- => -x < 2
- => x < -2
Hence, <u>the solution of the inequality is</u><u> x < -2.</u>
Hoped this helped.

Answer:
The given points are

The setting would have a interval or 2 units above and below the minimum and maximum of each coordinate.
The given maxium horizontal coordinate is 0.
The given minimum horizontal coordinate is -13.
The given maximum vertical coordinate is 3.
The given minimum vertical coordinate is -7.
Now, we extend each maximum and minimum value by 2 units to create the setting.
So, the setting is

With a scale of 2 units.
The answer would still be 3. Nothing changes
Note that x² + 2x + 3 = x² + x + 3 + x. So your integrand can be written as
<span>(x² + x + 3 + x)/(x² + x + 3) = 1 + x/(x² + x + 3). </span>
<span>Next, complete the square. </span>
<span>x² + x + 3 = x² + x + 1/4 + 11/4 = (x + 1/2)² + (√(11)/2)² </span>
<span>Also, for the x in the numerator </span>
<span>x = x + 1/2 - 1/2. </span>
<span>So </span>
<span>(x² + 2x + 3)/(x² + x + 3) = 1 + (x + 1/2)/[(x + 1/2)² + (√(11)/2)²] - 1/2/[(x + 1/2)² + (√(11)/2)²]. </span>
<span>Integrate term by term to get </span>
<span>∫ (x² + 2x + 3)/(x² + x + 3) dx = x + (1/2) ln(x² + x + 3) - (1/√(11)) arctan(2(x + 1/2)/√(11)) + C </span>
<span>b) Use the fact that ln(x) = 2 ln√(x). Then put u = √(x), du = 1/[2√(x)] dx. </span>
<span>∫ ln(x)/√(x) dx = 4 ∫ ln u du = 4 u ln(u) - u + C = 4√(x) ln√(x) - √(x) + C </span>
<span>= 2 √(x) ln(x) - √(x) + C. </span>
<span>c) There are different approaches to this. One is to multiply and divide by e^x, then use u = e^x. </span>
<span>∫ 1/(e^(-x) + e^x) dx = ∫ e^x/(1 + e^(2x)) dx = ∫ du/(1 + u²) = arctan(u) + C </span>
<span>= arctan(e^x) + C.</span>