The complete question is as follows: How many moles of a gas at 100 c does it take to fill a 1.00 l flask to a pressure of 152kPa
Answer: There are 0.0489 moles of a gas at
is required to fill a 1.00 l flask to a pressure of 152kPa.
Explanation:
Given: Volume = 1.00 L,
Pressure = 152 kPa (1 kPa = 1000 Pa) = 152000 Pa
Convert Pa into atm as follows.

Temperature = 
Using the ideal gas formula as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

Thus, we can conclude that there are 0.0489 moles of a gas at
is required to fill a 1.00 l flask to a pressure of 152kPa.
Answer:
= 20.82 g of BaCl2
Explanation:
Given,
Volume = 200 mL
Molarity = 0.500 M
Therefore;
Moles = molarity × volume
= 0.2 L × 0.5 M
= 0.1 mole
But; molar mass of BaCl2 is 208.236 g/mole
Therefore; 0.1 mole of BaCl2 will be equivalent to;
= 208.236 g/mol x 0.1 mol
= 20.82 g
Therefore, the mass of BaCl2 in grams required is 20.82 g
<span>The answer is deceleration. Acceleration is the general term to refer to the change in velocity. Acceleration = change in velocity / change in time. When you want to highlight the fact that the change in velocity is a decrease in the magnitude, you can use the term deceleration, which means that the acceleration is negative.</span>