We know, a = v/t
Here, a = 5 m/s²
v = 50 km/h= 13.88 m/s
Substitute their values into the expression:
5 = 13.88 / t
t = 13.88/5
t = 2.78 sec
Now, we know, v = d/t
13.88 = d/2.78
d = 13.88 * 2.78
d = 38.53 meter
In short, Your Answers would be:
i) It will take 2.78 sec
ii) It will travel for 38.53 m after a brakes applied.
Hope this helps!
We use the voltage division problem between the load resistance, amplifier output resistance as
.
Here,
is the output voltage,
is the amplifier voltage,
is the load resistance and
is the amplifier output resistance.
Therefore,
.
Thus, the amplifier output resistance is
.
Semi anthracite has the higest which is 29.5
The distance to the water is the same for both ... call it s meters
They both take 1.6 s to reach the water ... so t = 1.6 seconds
They both step off the bridge ... so both have an initial vertical velocity is 0 m/s
Just consider the vertical motion and take DOWN as the positive direction
a = 9.8 m/s²
s = v(i)t + (1/2)at²
s = 0 + (1/2) * 9.8 * 1.6²
s = 12.5 m ←←← Edit: Forgot to say ... that's how high the bridge is above the water
Now get the time it takes the first jumper to reach 1.8 m:
s = v(i)t + (1/2)at²
1.8 = 0 + 4.9t²
t = 0.61 s
so when the 2nd person jumps it takes the first person another 1.6 - 0.61 = 0.99 s to reach the water
Now find how far the 2nd jumper falls in 0.99 s:
s = 0 + 4.9 * 0.99²
s = 4.8 m
so the separation distance between the two jumpers when the 1st jumper hits the water is 12.5 - 4.8 = 7.7 m