1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
3 years ago
14

neptune is an average distance of 4.5×10^12m from the sun. Estimate the length of the Neptunian year.

Physics
1 answer:
Vikentia [17]3 years ago
6 0

As per Kepler's third law we know that

\frac{T_1^2}{T_2^2} = \frac{R_1^3}{R_2^3}

now here we know that

T_1 = year of Neptune

T_2 = year of Earth

R_1 = distance of Neptune from Sun

R_2 = Distance of Earth from Sun

so now we will have

\frac{T_1^2}{1} = \frac{(4.5 \times 10^{12})^3}{(1.5 \times 10^11)^3}

T_1^2 = 27000

T_1 = 164.3 years

so length of year of Neptune is 164.3 years

You might be interested in
4. Which of the following would be a good reference point to describe the motion of a dog?
saul85 [17]

ANOTHER RUNNING DOG

Explanation:

In the given question it is to find a suitable reference point to describe  the motion of dog. Here I could suggest that it is better to compare the dog with  another running dog to create the relative speed difference to get a reliable motion variation.

Because the motion of dog is in the linear with respect to the another dog and to the acceleration produced by the dog in the required interval is easy to calculate with respect to  another dog which is already in motion.

Hence, I suggest that Motion of dog can be analysed better by analyse the motion variation of dog with  another dog running.

4 0
3 years ago
Determine the energy required to accelerate an electron between each of the following speeds. (a) 0.500c to 0.900c MeV (b) 0.900
Aleonysh [2.5K]

Answer:

The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.

Explanation:

We know that,

Mass of electron m_{e}=9.11\times10^{-31}\ kg

Rest mass energy for electron = 0.511 Mev

(a). The energy required to accelerate an electron from 0.500c to 0.900c Mev

Using formula of rest,

E=\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{f}^2}{c^2}}}-\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{i}^2}{c^2}}}

E=\dfrac{0.511}{\sqrt{1-\dfrac{(0.900c)^2}{c^2}}}-\dfrac{0.511}{\sqrt{1-\dfrac{(0.500c)^2}{c^2}}}

E=0.582\ Mev

(b). The energy required to accelerate an electron from 0.900c to 0.942c Mev

Using formula of rest,

E=\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{f}^2}{c^2}}}-\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{i}^2}{c^2}}}

E=\dfrac{0.511}{\sqrt{1-\dfrac{(0.942c)^2}{c^2}}}-\dfrac{0.511}{\sqrt{1-\dfrac{(0.900c)^2}{c^2}}}

E=0.350\ Mev

Hence, The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.

4 0
3 years ago
FREE BRAINLEIAST FOR FIRST GOGOGOGO!!!!heererer
Kamila [148]

Answer:

ME PLS

Explanation:

6 0
3 years ago
Hitungkan pecutan bagi blok di bawah: / Cal<br>(a)<br>m= 2 kg<br>F= 8.0 N​
ioda

Answer:

Acceleration = 4 m/s²

Explanation:

Given the following data;

Force = 8 N

Mass = 2 kg

To find the acceleration of the block;

Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.

Mathematically, it is given by the formula;

Acceleration = \frac {Net \; force}{mass}

Substituting into the formula, we have;

Acceleration = \frac {8}{2}

Acceleration = 4 m/s²

4 0
3 years ago
A hollow cylinder with an inner radius of 5 mm and an outer radius of 26 mm conducts a 4-A current flowing parallel to the axis
bearhunter [10]

Answer:

B = 38.2μT

Explanation:

By the Ampere's law you have that the magnetic field generated by a current, in a wire, is given by:

B=\frac{\mu_o I_r}{2\pi r}     (1)

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

r: distance from the center of the cylinder, in which B is calculated

Ir: current for the distance r

In this case, you first calculate the current Ir, by using the following relation:

I_r=JA_r

J: current density

Ar: cross sectional area for r in the hollow cylinder

Ar is given by  A_r=\pi(r^2-R_1^2)

The current density is given by the total area and the total current:

J=\frac{I_T}{A_T}=\frac{I_T}{\pi(R_2^2-R_1^2)}

R2: outer radius = 26mm = 26*10^-3 m

R1: inner radius = 5 mm = 5*10^-3 m

IT: total current  = 4 A

Then, the current in the wire for a distance r is:

I_r=JA_r=\frac{I_T}{\pi(R_2^2-R_1^2)}\pi(r^2-R_1^2)\\\\I_r=I_T\frac{r^2-R_1^2}{R_2^2-R_1^2}  (2)

You replace the last result of equation (2) into the equation (1):

B=\frac{\mu_oI_T}{2\pi r}(\frac{r^2-R_1^2}{R_2^2-R_1^2})

Finally. you replace the values of all parameters:

B=\frac{(4\pi*10^{-7}T/A)(4A)}{2\PI (12*10^{-3}m)}(\frac{(12*10^{-3})^2-(5*10^{-3}m)^2}{(26*10^{-3}m)^2-(5*10^{-3}m)^2})\\\\B=3.82*10^{-5}T=38.2\mu T

hence, the magnitude of the magnetic field at a point 12 mm from the center of the hollow cylinder, is 38.2μT

8 0
3 years ago
Other questions:
  • A man is riding his 4-wheeler at 60 km/hr. If he is riding it constantly at this rate for 1.5 hours, how far did he ride?
    10·1 answer
  • A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b
    8·1 answer
  • How many excess electrons must be present on each sphere if the magnitude of the force of repulsion between them is 4.57×10−214.
    10·1 answer
  • A roller coaster has a mass of 650 kg. It sits at the top of a hill with height 78 m. If it drops from this hill, how fast is it
    13·1 answer
  • A cannon tilted up at a 29.0° angle fires a cannon ball at 81.0 m/s from atop a 22.0 m -high fortress wall. What is the ball's i
    12·1 answer
  • What is electricity? Why does it happen?
    5·2 answers
  • A physicist found that a force of 0.72N was measured between two charged sphere. The distance between the sphere was 0.90 m. Cal
    15·2 answers
  • Which graph best represents the relationship between the electric current and the rate at which a magnet is turning inside an el
    6·2 answers
  • anyone know where I can find stuff (answer key, tables, etc.) for my Newton's Law of Motion lab report on edge2020? need answers
    12·1 answer
  • Which equation best summarizes Newton’s 2nd law:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!