1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
3 years ago
9

A man has a power of 90 W and mass 60 kg runs up a staircase in 40 s. If each staircase is 20cm high find the number of steps? (

physics grade 9- GRAVITATION)

Physics
1 answer:
34kurt3 years ago
4 0
I showed my working in the images above. if you have any questions please feel free to ask

You might be interested in
A projectile is launched horizontally from a 20-m tall edifice with a vox of 25 m/s. How long will it take for the projectile to
NISA [10]

Answer:

a) First let's analyze the vertical problem:

When the projectile is on the air, the only vertical force acting on it is the gravitational force, then the acceleration of the projectile is the gravitational acceleration, and we can write this as:

a(t) = -9.8m/s^2

To get the vertical velocity we need to integrate over time to get:

v(t) = (-9.8m/s^2)*t + v0

where v0 is the initial vertical velocity because the object is thrown horizontally, we do not have any initial vertical velocity, then v0 = 0m/s

v(t) = (-9.8m/s^2)*t

To get the vertical position equation we need to integrate over time again, to get:

p(t) = (1/2)*(-9.8m/s^2)*t^2 + p0

where p0 is the initial position, in this case is the height of the edifice, 20m

then:

p(t) = (-4.9m/s^2)*t^2+ 20m

The projectile will hit the ground when p(t) = 0m, then we need to solve:

(-4.9m/s^2)*t^2+ 20m = 0m

20m = (4.9m/s^2)*t^2

√(20m/ (4.9m/s^2)) = t = 2.02 seconds

The correct option is a.

b) The range will be the total horizontal distance traveled by the projectile, as we do not have any horizontal force, we know that the horizontal velocity is 25 m/s constant.

Now we can use the relationship:

distance = speed*time

We know that the projectile travels for 2.02 seconds, then the total distance that it travels is:

distance = 2.02s*25m/s = 50.5m

Here the correct option is a.

c) Again, the horizontal velocity never changes, is 25m/s constantly, then here the correct option is option b. 25m/s

d) Here we need to evaluate the velocity equation in t = 2.02 seconds, this is the velocity of the projectile when it hits the ground.

v(2.02s) =  (-9.8m/s^2)*2.02s = -19.796 m/s

The velocity is negative because it goes down, and it matches with option d, so I suppose that the correct option here is option d (because the sign depends on how you think the problem)

4 0
3 years ago
A bicyclist, initially at rest, begins pedaling and gaining speed steadily for 4.90s during which she covers 25.0m.
emmasim [6.3K]

The bicyclist accelerates with magnitude <em>a</em> such that

25.0 m = 1/2 <em>a</em> (4.90 s)²

Solve for <em>a</em> :

<em>a</em> = (25.0 m) / (1/2 (4.90 s)²) ≈ 2.08 m/s²

Then her final speed is <em>v</em> such that

<em>v</em> ² - 0² = 2<em>a</em> (25.0 m)

Solve for <em>v</em> :

<em>v</em> = √(2 (2.08 m/s²) / (25.0 m)) ≈ 10.2 m/s

Convert to mph. If you know that 1 m ≈ 3.28 ft, then

(10.2 m/s) • (3.28 ft/m) • (1/5280 mi/ft) • (3600 s/h) ≈ 22.8 mi/h

8 0
3 years ago
A tennis player strikes a tennis ball from underneath with her racket. The ball is sent straight up with an initial velocity of
Stels [109]
So the acceleration of gravity is 9.8 m/s so that’s how quickly it will accelerate downwards. You can use a kinematic equation to determine your answer. We know that initial velocity was 19 m/s, final velocity must be 0 m/s because it’s at the very top, and the acceleration is -9.8 m/s. You can then use this equation:

Vf^2=Vo^2+2ax

Plugging in values:

361=19.6x

X=18 m
6 0
3 years ago
If a car moving down this road rounds this curve and changes its direction to the right, is this an example of speed, velocity,
mars1129 [50]

Answer: velocity

Explanation: it's the rate of change of the objects position/ consistent change

4 0
3 years ago
Read 2 more answers
Consider an experiment in which slow neutrons of momentum ¯hk are scattered by a diatomic molecule; suppose that the molecule is
madreJ [45]

Answer:

Check the explanation

Explanation:

When we have an object in periodic motion, the amplitude will be the maximum displacement from equilibrium. Take for example, when there’s a back and forth movement of a pendulum through its equilibrium point (straight down), then swings to a highest distance away from the center. This distance will be represented as the amplitude, A. The full range of the pendulum has a magnitude of 2A.

position = amplitude x sine function(angular frequency x time + phase difference)

x = A sin(ωt + ϕ)

x = displacement (m)

A = amplitude (m)

ω = angular frequency (radians/s)

t = time (s)

ϕ = phase shift (radians)

Kindly check the attached image below to see the step by step explanation to the question above.

3 0
3 years ago
Other questions:
  • PLEASE HELP I AM ON A TIMED QUIZ
    14·2 answers
  • The three main phases of matter (not including plasma) are solids, liquids, and gases. They have different properties concerning
    15·2 answers
  • A probe is launched from earth and lands on mars the gravitational acceleration on mars is 3.7 m/s. Which statement best compare
    12·2 answers
  • A python can detect thermal radiation from objects that differ in temperature from their environment as long as the received int
    15·1 answer
  • IPDE stands for ____________. A. Identify, Predict, Decide, and Execute B. Interpret, Predict, Divide, and Execute C. Identify,
    11·2 answers
  • A group of scientists decide to repeat the muon decay experiment (TR Section 2.7) at the Mauna Kea telescope site in Hawaii, whi
    15·1 answer
  • 7. An automobile with a radio antenna 1.0 m long travels at 100.0 km/h in a location where the Earth’s horizontal magnetic field
    6·1 answer
  • A 4-kg hammer is lifted to a height of 10 m and dropped from rest. What was the velocity (in m/s) of the hammer when it was at a
    7·1 answer
  • Which best explains how a heat pump can heat a room?
    15·2 answers
  • A particular laser developed in 1995 at the University of Rochester, in New York, produced a beam of light that lasted for about
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!