Answer:
The stiffness of one of the individual spring is 390 N/m.
Explanation:
It is given that 43 identical springs are placed side-by-side and connected to a large massive block.
The stiffness of the 43 spring combination is 16770 N/m
We need to find the stiffness of one of the individual springs. Let k is the stiffness of one spring. The effective spring stiffness of this width spring is given by :



k = 390 N/m
So, the stiffness of one of the individual spring is 390 N/m. Hence, this is the required solution.
Answer:
B
Explanation:
Transformation of energy involves conversion of energy from one form to another for example our movement around involves the conversion of chemical energy stored in the food we eat to other forms of energy such as kinetic energy for the movement, electrical energy in the neurons for impulses and others
The ball posses gravitational potential energy since it is held at a displacement to the ground ( zero point) and when released, the gravitational potential energy is converted to kinetic energy which leads to the fall of the ball until it is at zero displacement to the earth. The board likewise when bent to its maximum extent stored elastic potential energy as a result of the partial displacement of its constituent particle provided it is not stretch beyond its elastic limit which can lead to deformation of the board and the elastic potential energy lost.
Answer:
They collide, couple together, and roll away in the direction that <u>the 2m/s car was rolling in.</u>
Explanation:
We should start off with stating that the conservation of momentum is used here.
Momentum = mass * speed
Since, mass of both freight cars is the same, the speed determines which has more momentum.
Thus, the momentum of the 2 m/s freight car is twice that of the 1 m/s freight car.
The final speed is calculated as below:
mass * (velocity of first freight car) + mass * (velocity of second freight car) = (mass of both freight cars) * final velocity
(m * V1) + (m * V2) = (2m * V)
Let's substitute the velocities 1m/s for the first car, and - 2m/s for the second. (since the second is opposite in direction)
We get:

solving this we get:
V = - 0.5 m/s
Thus we can see that both cars will roll away in the direction that the 2 m/s car was going in. (because of the negative sign in the answer)
Answer it ur self if u have internet
Answer:
very small solid particles called interstellar dust.
Explanation:
In the space between the stars there is gas and dust, which represent at least 20% of the mass of our galaxy. In the Milky Way it is considered that there is a gas density of approximately 0.2 to 0.5 atoms / cm3 in the surroundings of the Sun; with respect to the dust an average of 1 g / cm3 is estimated.
Gas is about atoms and molecules, mainly hydrogen; In order of abundance, helium, carbon, oxygen, nitrogen and iron follow. On the other hand, the dust is tiny particles, generally smaller than 10 microns; the dust does not shine and therefore it is only distinguished when it is projected on bright regions (nebulae or clusters).
Interstellar matter is mainly concentrated towards the plane of the galaxy, in the strip corresponding to the Milky Way; there you can see bright nebulas of diffuse character called nebulas. These nebulae are classified according to three types: (a) bright or emission nebulae, (b) reflection nebulae and (c) planetary nebulae.
Hydrogen appears both ionized and neutral; The bright nebulae are composed of ionized hydrogen and other ionized elements. Non-ionized (neutral) hydrogen is found in the spiral arms of the Milky Way and can be detected through radio waves.