The correct answer is option B
The fishes that live in the shallow water along the sea floor needs a flattened shape and eyes on the dorsal side because they need to see above and have least possibility that the eyes will be required to see downwards as they lie at the sea floor.
They have tail for protection and flattened body for easy swimming.
Example: Stingray.
Answer:
<h2>Carbon is the chemical backbone of life on Earth. Carbon compounds regulate the Earth’s temperature, make up the food that sustains us, and provide energy that fuels our global economy.
</h2><h2 /><h2>The carbon cycle.
</h2><h2>Most of Earth’s carbon is stored in rocks and sediments. The rest is located in the ocean, atmosphere, and in living organisms. These are the reservoirs through which carbon cycles.
</h2><h2 /><h2>NOAA technicians service a buoy in the Pacific Ocean designed to provide real-time data for ocean, weather and climate prediction.
</h2><h2>NOAA buoys measure carbon dioxide
</h2><h2>NOAA observing buoys validate findings from NASA’s new satellite for measuring carbon dioxide
</h2><h2>Listen to the podcast
</h2><h2>Carbon storage and exchange
</h2><h2>Carbon moves from one storage reservoir to another through a variety of mechanisms. For example, in the food chain, plants move carbon from the atmosphere into the biosphere through photosynthesis. They use energy from the sun to chemically combine carbon dioxide with hydrogen and oxygen from water to create sugar molecules. Animals that eat plants digest the sugar molecules to get energy for their bodies. Respiration, excretion, and decomposition release the carbon back into the atmosphere or soil, continuing the cycle.
</h2><h2 /><h2>The ocean plays a critical role in carbon storage, as it holds about 50 times more carbon than the atmosphere. Two-way carbon exchange can occur quickly between the ocean’s surface waters and the atmosphere, but carbon may be stored for centuries at the deepest ocean depths.
</h2><h2 /><h2>Rocks like limestone and fossil fuels like coal and oil are storage reservoirs that contain carbon from plants and animals that lived millions of years ago. When these organisms died, slow geologic processes trapped their carbon and transformed it into these natural resources. Processes such as erosion release this carbon back into the atmosphere very slowly, while volcanic activity can release it very quickly. Burning fossil fuels in cars or power plants is another way this carbon can be released into the atmospheric reservoir quickly.</h2>
Explanation:
Answer:
α = 0 if β= 0
Explanation:
If both species want to persist in the same environment and their niches are also over lapping then both of the co-efficient values should be equal. There are two possibilities on these values for persistence. One is that one should compromise to the change produced by the invasive specie and two is that the new specie should compromise if he wants to stay (<em><u>Assuming that there is no competition</u></em>). In this way their niches won't overlap to a greater extent and therefore better chances of survival for both.
A light-year is how astronomers measure distance in space, hope this helps ^^
<span>D. In a study of the effect of lawn fertilizer on the health of a
backyard pond, biologists grow two colonies of duckweed in a large flask to
represent pond ecosystems. </span>
The scientific design in which has limitations
due to oversimplification is the statement “in a study of the effect of lawn
fertilizer on the health of a backyard pond, biologists grow two colonies of
duckweed in a large flask to represent pond ecosystems”. Oversimplification is
an overview and generalization of a statement to miscomprehension,
misperception or even error. It overlaps the true statement.