if you isolate y in the top equation to get y=5x+6 then you can substiture y for 5x+6 in the bottom equation because thats what y equals
as of now you have -3x+6(5x+6)=-12 but if you use the distrubite property you would get -3x+30x+36=-12
then if you subtract 36 from both sides you would get -3x+30x=-48 then combine like terms to get 27x=-48 then divide both sides by 27 to get
or x≈1.8
Answer: x= -2
Step-by-step explanation:
Here you go!
Given:
'a' and 'b' are the intercepts made by a straight-line with the co-
ordinate axes.
3a = b and the line pass through the point (1, 3).
To find:
The equation of the line.
Solution:
The intercept form of a line is
...(i)
where, a is x-intercept and b is y-intercept.
We have, 3a=b.
...(ii)
The line pass through the point (1, 3). So, putting x=1 and y=3, we get



Multiply both sides by a.

The value of a is 2. So, x-intercept is 2.
Putting a=2 in
, we get


The value of b is 6. So, y-intercept is 6.
Putting a=2 and b=6 in (i), we get

Therefore, the equation of the required line in intercept form is
.
Answer:
a) 
b) 
Step-by-step explanation:
For this case we can use a linear model to solve the problem.
s) Create an equation to express the increase on the price tickets and the number of seats sold
number of seats, if w analyze the info given the number of seats after increase the price is given by
.
And let P the price for the ticket. So after the increase in ticket price the expression for the increase is P-200.
We have an additional info, for each increase of $3 the number of setas decrease 1. And the equation that gives to us the price change in terms of the increase of price is:

So then our linear equation is given by:

b) Over a certain period, the number of seats sold for this flight ranged between 90 and 115. What was the corresponding range of ticket prices?
So for this case we just need to replace the limits into the linear equation and see what we got:


So the corresponding range of ticket prices is:
