Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Answer:
The potential energy increases and the kinetic energy decreases
Answer:
<em>Answer: positive velocity & negative acceleration</em>
Explanation:
<u>Accelerated Motion</u>
Both the velocity and acceleration are vectors because they have magnitude and direction. When the motion is restricted to one dimension, i.e. left-right or up-down, the direction is marked with the sign according to some preset reference.
The locomotive is moving at a certain speed with a (so far) unknown sign but the acceleration has a negative sign. Since the locomotive comes to a complete stop it means the velocity and the acceleration are of opposite signs.
Thus the velocity is positive.
Answer: positive velocity & negative acceleration
Answer:
Options 1 and 5 are correct
Explanation:
Magnetic field lines can never cross, the field is unique at any point in space. Magnetic field lines are continuous, forming closed loops without beginning or end. They go from the north pole to the south pole.
Magnetic field lines form closed loops but do not intersect.
Electric field lines originate at the positive charges and terminate at the negative charges. They move in a straight line and are parallel. Electric field lines neither form closed loops nor intersect.
Since, magnetic field lines form closed loops and move from North to South pole, they come out of north poles outside the magnet and into north poles inside the magnet, they also go into south poles outside the magnet and out of south poles inside the magnet.