The absolute pressure is given by the equation,

Here,
is absolute pressure,
is atmospheric pressure and
is vacuum pressure.
Therefore,

The gage pressure is given by the equation,
.
Thus,
.
In kn/m^2,
The absolute pressure,

The gage pressure,
.
In lbf/in2
The absolute pressure,

The gage pressure,

In psi,
The absolute pressure,
.
The gage pressure,

In mm Hg
The absolute pressure,

The gage pressure,

Answer:
Force(Romeo moving) = 5,000 N
Explanation:
Given:
Mass of horse = 900 kg
Acceleration = 20 km/hr
Find:
Force(Romeo moving)
Computation:
Acceleration = 20 km/hr
Acceleration in m/s = 20 / 3.6 = 5.555556 m/s²
Force = m x a
Force(Romeo moving) = 900 x 5.555556
Force(Romeo moving) = 5,000 N
Answer : The average speed of the sprinter is, 34.95 Km/hr
Solution :
Average velocity : It is defined as the distance traveled by the time taken.
Formula used for average velocity :

where,
= average velocity
d = distance traveled = 200 m
t = time taken = 20.6 s
Now put all the given values in the above formula, we get the average velocity of the sprinter.

conversion :
(1 Km = 1000m)
(1 hr = 3600 s)
Therefore, the average speed of the sprinter is, 34.95 Km/hr
It would depend on how she jumped off but based on it sounds it would be a curving motion
Answer: 
Explanation:
A direct proportionality means a linear relationship between two variables and rate of change means an application of derivatives. Hence, the mathematical model is:
