B) not work ,because the water would freeze
here we will use the concept of Newton's III law
as per Newton's III law the impulse given to the ball is same as the impulse lost by the bat
So here we will say
impulse gain by the ball = impulse lost by the bat

given that


For ball the change in speed will be

now from above equation


so speed of bat will decrease by 6.72 mph
Well first of all, you must realize that it depends on how the jumpers are distributed on the earth's surface. If,say, one billion of them are in the eastern hemisphere and the other billion are in the western one, then the sum of all of their momenta could easily be zero, and have no effect at all on the planet. I'm pretty sure what you must have in mind is to consider the Earth to be a block, with a flat upper surface, and all the people jump in the same direction.
average mass per person = 60 kg.
jump velocity = 7 m/s straight up and away from the block, all in the same direction
one person's worth of momentum = (m) (v) = 420 kg.m/s
sum of two billion of them = 8.4 x 10¹¹ kg-m/s all in the same direction
Earth's "recoil" momentum = 8.4 x 10¹¹ in the opposite direction = (m) (v)
Divide each side by 'm' : v = (momentum) / (mass) =
The Earth's "recoil" velocity is (8.4 x 10¹¹) / (5.98 x 10²⁴) =
1.405 x 10⁻¹³ m/s =
<em> 0.00000000014 millimeter per second
</em>I have no intuitive feeling for this kind of thing, so can't judge whether
the answer is reasonable. But my math and physics felt OK on the
way to the solution, so that's my answer and I'm sticking to it.
Speed is defined as the distance over time. So in measuring the speed of a car, the most manual thing that we can do besides using a speedometer is to measure a certain distance then measure the time at which the car passes that distance then divide the distance over the time. Then determine the speed limit.